目錄高斯數學教材參考答案 高斯數學4年級答案 高斯數學課本答案6上 高斯數學作業本答案 高斯數學七年級答案
5050 高斯求和:(首項+末項)×項數÷2 也就是(1+100)×100÷2 在全世界廣為流傳的一則故事說,高斯10歲時算出布特納給學生們出的將1到100的所有整數加起來嫌笑的算術題,布特納剛敘述完題目,高斯就算出了正確答案。不過,這很可能是一個不真實的傳說。據對高斯素有研究的著名數學史家E·T·貝爾(E.T.Bell)考證,布特納當時給孩子們出的是一道更難的加法題:81297+81495+81693+…+100899。 當然,這也是一個等差數列的求和問題(公差為198,項數為100)。當布特納剛一寫完時,高斯也算完并把寫有答案的小石板交了上去。E·T·貝爾寫道,高斯晚年經常喜歡向人們談論這件事,說當時只有他寫的答案是正確的,而其他的孩子們都錯了。高斯沒有明確地講數喊過,他是用什么方法那么快就解決了這個問題。數學史家們傾向于認為,高斯當時已掌握了等差數列求和的方法。一位年僅10歲的孩子,能獨立發現這一數學方法實屬很不平常。貝爾根據高斯本人晚年的說芹畢含法而敘述的史實,應該是比較可信的。而且,這更能反映高斯從小就注意把握更本質的數學方法這一特點。
這是一則小故事凱姿鉛,冊返摘抄一下公式,就OK了,^_^ 高斯念小學的時候,有一次在老盯好師教完加法后,所以便出了一道題目要同學們算算看,題目是: 1+2+3+ .. +97+98+99+100 = ? 老師心里正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被 高。
(1)S=1+3+5+…+(2n-1)
=[1+(2n-1)]+[3+(2n-3)+…+(2n)
=(2n)n÷2=n2
(2)設第一個圖形、第二個圖形、第三個圖形的三角形個數和分別為a1、a2、a3,第n個圖形三角形的個數是an.第一個圖形到第n個圖形改喊的巧鉛三角形個數核寬野之和為S,則a1=1,a2=5,a3=9,an=4n-3.
S=a1+a2+an=1+5+9+4n-3
=[1+(4n-3)]+[5+(4n-7)]+(4n-2)
=(4n-2)=n(2n-1)
=2n2-n
從別處Ctrl+cCtrl+v來的數學家高斯小時候的故事從一加到一百高斯有許多有趣的故事,故事的第一手資料常來自高斯本人,因為他在晚年時總喜歡談他兆老小時后的事,我們也許會懷疑故事的真實性,但許多人都證實了他所談的故事。高斯的父親作泥瓦廠的工頭,每星期六他總是要發薪水給工人。在高斯三歲夏天時,有一次當他正要發薪水的時候,小高斯站了起來說:「爸爸,你弄錯了。」然后他說了另外一個數目。原來三歲的小高斯趴在地板上,一直暗地里跟著他爸爸計算該給誰多少工錢。重算的結果證明小高斯是對的,這把站在那里的大人都嚇的目瞪口呆。高斯常常帶笑說,他在學講話之前就已經學會計算了,還常說他問了大人字母如何發音后,就自己學著讀起書來。七歲時高斯進了St.Catherine小學。大約在十歲時,老師在算數課上出了一道難題:「把1到100的整數寫下來,然后把它們加起來!」每當有考試時他們有如下的習慣:第一個做完的就把石板〔當時通行,寫字用〕面朝下地放在老師的桌子上,第二個做完的就把石板擺在第一張石板上,就這樣一個一個落起來。這個難題當然難不倒學過算數級數的人,但這些孩子才剛開始學算數呢!老師心想他可以休息一下了。但他錯了,因為還不到幾秒鐘,高斯已經把石板放在講桌上了,同時說道:「答案在這兒!」其他的學生把數字一個個加起來,額頭都出了汗水,但高斯卻靜靜坐著,對老師投來的,輕蔑的、懷疑的眼光毫不在意。考完后,老師一張張地檢查著石板。大部分都做錯了,學生就吃了一頓鞭打。最后,高斯的石板被翻了過來,只見上面只有一個數字:5050(用不著說,這是正確的答案。)老師吃了一驚,高斯就解釋他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50對和為101的數目,所以答案是50×101=5050。由此可見高斯找到了算術級數的對稱性,然后就像求得一般算術級數合的過程一樣,把數目一對對地湊在一起。數學家高斯的故事高斯(Gauss1777~1855)生于Brunswick,位于現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生并不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終于發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,后來成為大學教授,族逗升他教了高斯更深的數學。老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最后的結論是--去找指粗有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪里找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之后,Bartels也沒有什么東西可以教高斯了。1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業后就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。數學家華羅庚小時候的軼事華羅庚(1910——1982)出生于江蘇太湖畔的金壇縣,因出生時被父親華老祥放于籮筐以圖吉利,“進籮避邪,同庚百歲“,故取名羅庚。華羅庚從小便貪玩,也喜歡湊熱鬧,只是功課平平,有時還不及格。勉強上完小學,進了家鄉的金壇中學,但仍貪玩,字又寫得歪歪扭扭,做數學作業時倒時滿認真地畫來畫去,但像涂鴉一般,所以上初中時的華羅庚仍不被老師喜歡的學生而且還常常挨戒尺。金壇中學的一位名叫王維克的教員卻獨有慧眼,他研究了華羅庚涂鴉的本子才發現這許多涂改的地方正反映他解題時探索的多種路子。一次王維克老師給學生講[孫子算經]出了這樣一道題:”今有物不知其數,三三數之剩其二,五五數剩其三,七七數剩其二,問物幾何?“正在大家沉默之際,有個學生站起來,大家一看,原來是向來為人瞧不起的華羅庚,當時他才十四歲,你猜一猜華羅庚他說出是多少?陳景潤:小時候,教授送我一顆明珠20多年前,一篇轟動全中國的報告文學《哥德巴赫猜想》,使得一位數學奇才一夜之間街知巷聞、家喻戶曉。在一定程度上,這個人的事跡甚至還推動了一個尊重科學、尊重知識和尊重人才的偉大時代早日到來。他的名字叫做陳景潤。不善言談,他曾是一個“丑小鴨”。通常,一個先天的聾子目光會特別犀利,一個先天的盲人聽覺會十分敏銳,而一個從小不被人注意、不受人歡迎的“丑小鴨”式的人物,常常也會身不由己或者說百般無奈之下窮思冥想,探究事理,格物致知,在天地萬物間重新去尋求一個適合自己的位置,發展自己的潛能潛質。你可以說這是被逼的,但這么一“逼”往往也就“逼”出來不少偉人。比如童年時代的陳景潤。陳景潤1933年出生在一個郵局職員的家庭,剛滿4歲,抗日戰爭開始了。不久,日寇的狼煙燒至他的家鄉福建,全家人倉皇逃入山區,孩子們進了山區學校。父親疲于奔波謀生,無暇顧及子女的教育;母親是一個勞碌終身的舊式家庭婦女,先后育有12個子女,但最后存活下來的只有6個。陳景潤排行老三,上有兄姐、下有弟妹,照中國的老話,“中間小囡軋扁頭“,加上他長得瘦小孱弱,其不受父母歡喜、手足善待可想而知。在學校,沉默寡言、不善辭令的他處境也好不到哪里去。不受歡迎、遭人欺負,時時無端挨人打罵。可偏偏他又生性倔強,從不曲意討饒,以求改善境遇,不知不覺地便形成了一種自我封閉的內向性格。人總是需要交流的,特別是孩子。稟賦一般的孩子面對這種困境可能就此變成了行為乖張的木訥之人,但陳景潤沒有。對數字、符號那種天生的熱情,使得他忘卻了人生的艱難和生活的煩惱,一門心思地鉆進了知識的寶塔,他要尋求突破,要到那里面去覓取人生的快樂。所謂因材施教,就是通過一定的教育教學方法和手段,為每一個學生創造一個根據自己的特點充分得到發展的空間。小小陳景潤,自己對自己因材施教著。一生大幸,小學生邂逅大教授但是,他畢竟還是個孩子。除了埋頭書卷,他還需要面對面、手把手的引導。畢竟,能給孩子帶來最大、最直接和最鮮活的靈感和歡樂的,還是那種人與人之間的、耳提面命式的,能使人心靈上迸射出輝煌火花的交流和接觸。所幸,后來隨著家人回到福州,陳景潤遇到了他自謂是終身獲益匪淺的名師沈元。沈元是中國著名的空氣動力學家,航空工程教育家,中國航空界的泰斗。他本是倫敦大學帝國理工學院畢業的博士、清華大學航空系主任,1948年回到福州料理家事,正逢戰事,只好留在福州母校英華中學暫時任教,而陳景潤恰恰就是他任教的那個班上的學生。大學名教授教幼童,自有他與眾不同、出手不凡的一招。針對教學對象的年齡和心理特點,沈元上課,常常結合教學內容,用講故事的方法,深入淺出地介紹名題名解,輕而易舉地就把那些年幼的學童循循誘入了出神入化的科學世界,激起他們向往科學、學習科學的巨大熱情。比如這一天,沈元教授就興致勃勃地為學生們講述了一個關于哥德巴赫猜想的故事。師手遺“珠“,照亮少年奮斗的前程“我們都知道,在正整數中,2、4、6、8、10,這些凡是能被2整除的數叫偶數;1、3、5、7、9,等等,則被叫做奇數。還有一種數,它們只能被1和它們自身整除,而不能被其他整數整除,這種數叫素數。“像往常一樣,整個教室里,寂靜地連一根繡花針掉在地上的聲音都能聽見,只有沈教授沉穩渾厚的嗓音在回響。“二百多年前,一位名叫哥德巴赫的德國中學教師發現,每個不小于6的偶數都是兩個素數之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13反反復復的,哥德巴赫對許許多多的偶數做了成功的測試,由此猜想每一個大偶數都可以寫成兩個素數之和。”沈教授說到這里,教室里一陣騷動,有趣的數學故事已經引起孩子們極大的興趣。“但是,猜想畢竟是猜想,不經過嚴密的科學論證,就永遠只能是猜想。”這下子輪到小陳景潤一陣騷動了。不過是在心里。該怎樣科學論證呢?我長大了行不行呢?他想。后來,哥德巴赫寫了一封信給當時著名的數學家歐勒。歐勒接到信十分來勁兒,幾乎是立刻投入到這個有趣的論證過程中去。但是,很可惜,盡管歐勒為此幾近嘔心瀝血,鞠躬盡瘁,卻一直到死也沒能為這個猜想作出證明。從此,哥德巴赫猜想成了一道世界著名的數學難題,二百多年來,曾令許許多多的學界才俊、數壇英杰為之前赴后繼,競相折腰。教室里已是一片沸騰,孩子們的好奇心、想像力一下全給調動起來。“數學是自然科學的皇后,而這位皇后頭上的皇冠,則是數論,我剛才講到的哥德巴赫猜想,就是皇后皇冠上的一顆璀璨奪目的明珠啊!”沈元一氣呵成地講完了關于哥德巴赫猜想的故事。同學們議論紛紛,很是熱鬧,內向的陳景潤卻一聲不出,整個人都“癡”了。這個沉靜、少言、好冥思苦想的孩子完全被沈元的講述帶進了一個色彩斑斕的神奇世界。在別的同學嘖嘖贊嘆、但贊嘆完了也就完了的時候,他卻在一遍一遍暗自跟自己講:“你行嗎?你能摘下這顆數學皇冠上的明珠嗎?”一個是大學教授,一個是黃口小兒。雖然這堂課他們之間并沒有嚴格意義上的交流、甚至連交談都沒有,但又的確算得上一次心神之交,因為它奠就了小陳景潤一個美麗的理想,一個奮斗的目標,并讓他愿意為之奮斗一輩子!多年以后,陳景潤從廈門大學畢業,幾年后,被著名數學家華羅庚慧眼識中,伯樂相馬,調入中國科學院數學研究所。自此,在華羅庚的帶領下,陳景潤日以繼夜地投入到對哥德巴赫猜想的漫長而卓絕的論證過程之中。1966年,中國數學界升起一顆耀眼的新星,陳景潤在中國《科學通報》上告知世人,他證明了(1+2)!1973年2月,從“文革“浩劫中奮身站起的陳景潤再度完成了對(1+2)證明的修改。其所證明的一條定理震動了國際數學界,被命名為“陳氏定理”。不知道后來沈元教授還能否記得自己當年對這幫孩子們都說了些什么,但陳景潤卻一直記得,一輩子都那樣清晰。名人成長路陳景潤(1933-1996),當代著名數學家。1950年,僅以高二學歷考入廈門大學,1953年畢業留校任教。1957年調入中國科學院數學研究所,后任研究員。1973年發表論文《大偶數表為一個素數及一個不超過二個素數的乘積之積》。1979年,論文《算術級數中的最小素數》問世。1980年當選為中國科學院學部委員(中國科學院院士)。
答案攔差野是520。
每個數分兩部分來看慶蔽:第一位和剩下的部分,對上面的數字進行分解就是1-4、2-8、3-12、4-16。容易看出第一部分的規律是1、2、3、4,第二部分的規律是遞增4,因此推斷簡喊第5個數第一部分是5,第二部分是20,合起來就是520。