日韩国产欧美区_高清电影一区_国产精品日韩精品在线播放_日韩精品三区四区

當前位置: 首頁 > 學科分類 > 數學

數學必修一,數學人教必修一

  • 數學
  • 2023-05-25
目錄
  • 高中新教材必修一數學
  • 必修一數學a版電子版
  • 數學必修一目錄
  • 數學必修一電子課本
  • 數學必修一人教版電子課本

  • 高中新教材必修一數學

    一本書的名字。

    《高中數學必修1》(即《普通高中課程標準實驗教科書·數學必修1·A版》的簡稱)是2007年人民教育出版社出版的圖書,作者是人民教育出版社課程教材研究所、中學數學課程教材研究開發中心。該書是高中數學學習階段順序必修的第一本教學輔助資料。

    主要內容

    (1)集合的含義與表示

    ①通過實例,了解集合的含義,體會元素與集合的“屬于”關系。

    ②能選擇自然語言、圖形語言、集合語言(列舉法搏前或描述法)描述不同的具體問題,感受集合語言的意義和作用。

    (2)集合間的基本關系

    ①理解集合之間包含與相皮粗等的含義,能識別給定集基握清合的子集。

    ②在具體情境中,了解與空集的含義。

    (3)集合的基本運算

    ①理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。

    ②理解在給定集合中一個子集的補集的含義,會求給定子集的補集。

    ③能使用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。

    必修一數學a版電子版

    高一數學必修一所改行碧有公式歸納如下:帶物

    【兩角和公式】。

    sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA。

    cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB。

    tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)。

    ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)。

    【倍角公式】。

    tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga。

    cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。核舉

    【半角公式】。

    sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)。

    cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)。

    tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))。

    ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))。

    【降冪公式】。

    (sin^2)x=1-cos2x/2。

    (cos^2)x=i=cos2x/2。

    【萬能公式】。

    令tan(a/2)=t。

    sina=2t/(1+t^2)。

    cosa=(1-t^2)/(1+t^2)。

    tana=2t/(1-t^2)。

    數學必修一目錄

    高中課本并不是像初中一樣分上下冊,數學分必修和選修,必修帆純從一到五,選修有的會上有的橘培不會,必修一是你進態伍咐高中學的第一本數學書

    數學必修一電子課本

    數學是比較容易得分的科目之一,那么高一數學必修一知識點有哪些呢。以下是由我為大家整理的“高一數學必修一知識點總結”,僅供參考,歡迎大家閱讀。

    第一章 集合與函數概念

    一、集合有關概念 1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。 2、集合的中元素的三個特性: 1.元素的確定性; 2.元喚信素的互異性; 3.元素的無序性

    說明:

    (1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

    (2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅神銀算一個元素。

    (3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排和瞎輪列順序是否一樣。

    (4)集合元素的三個特性使集合本身具有了確定性和整體性。

    3、集合的表示:{ … } 如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

    2.集合的表示方法:列舉法與描述法。

    注意啊:常用數集及其記法:非負整數集(即自然數集)記作:N 正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R 關于“屬于”的概念 集合的元素通常用小寫的拉丁字母表示,

    如:a是集合A的元素,就說a屬于集合A 記作 a∈A ,相反,a不屬于集合A 記作 a?A 列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。

    描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合的方法。用確定的條件表示某些對象是否屬于這個集合的方法。 ①語言描述法:例:{不是直角三角形的三角形} ②數學式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}

    4、集合的分類:

    1.有限集 含有有限個元素的集合 2.無限集 含有無限個元素的集合 3.空集 不含任何元素的集合 例:{x|x2=-5}二、集合間的基本關系

    1.“包含”關系—子集注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A2.“相等”關系(5≥5,且5≤5,則5=5)實例:設 A={x|x2-1=0} B={-1,1} “元素相同”

    結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,

    即:A=B ① 任何一個集合是它本身的子集。AíA

    ②真子集:如果AíB,且A1 B那就說集合A是集合B的真子集,記作A B(或B A)

    ③如果 AíB, BíC ,那么 AíC

    ④ 如果AíB 同時 BíA 那么A=B

    3. 不含任何元素的集合叫做空集,記為Φ 規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 三、集合的運算 1.交集的定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集. 記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}. 2、并集的定義:一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}. 3、交集與并集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.

    4、與補集(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集) 記作: CSA 即 CSA ={x | x?S且 x?A}

    (2):如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個。通常用U來表示。

    (3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ

    ⑶(CUA)∪A=U

    二、函數的有關概念

    1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域

    . 注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;

    3 函數的定義域、值域要寫成集合或區間的形式. 定義域補充 能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等于零; (2)偶次方根的被開方數不小于零;

    (3)對數式的真數必須大于零;(4)指數、對數式的底必須大于零且不等于1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等于零 (6)實際問題中的函數的定義域還要保證實際問題有意義. (又注意:求出不等式組的解集即為函數的定義域。) 構成函數的三要素:定義域、對應關系和值域 再注意:(1)構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備) (見課本21頁相關例2) 值域補充 (1)、函數的值域取決于定義域和對應法則,不論采取什么方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。 3. 函數圖象知識歸納 (1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象. C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C={ P(x,y) | y= f(x) , x∈A } 圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。 (2) 畫法 A、描點法:根據函數解析式和定義域,求出x,y的一些對應值并列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最后用平滑的曲線將這些點連接起來. B、圖象變換法(請參考必修4三角函數) 常用變換方法有三種,即平移變換、伸縮變換和對稱變換

    (3)作用: 1、直觀的看出函數的性質; 2、利用數形結合的方法分析解題的思路。提高解題的速度。 發現解題中的錯誤。 4.快去了解區間的概念

    (1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.

    5.什么叫做映射 一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對于集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作“f:A B” 給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象

    說明:函數是一種特殊的映射,映射是一種特殊的對應

    ,①集合A、B及對應法則f是確定的;②對應法則有“方向性”,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對于映射f:A→B來說,則應滿足:

    (Ⅰ)集合A中的每一個元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;

    (Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。

    常用的函數表示法及各自的優點:

    1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;

    2 解析法:必須注明函數的定義域;

    3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特征;

    4 列表法:選取的自變量要有代表性,應能反映定義域的特征. 注意?。航馕龇ǎ罕阌谒愠龊瘮抵?。列表法:便于查出函數值。圖象法:便于量出函數值

    補充一:分段函數 (參見課本P24-25) 在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變量代入相應的表達式。

    分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式并用一個左大括號括起來,并分別注明各部分的自變量的取值情況.

    (1)分段函數是一個函數,不要把它誤認為是幾個函數;

    (2)分段函數的定義域是各段定義域的并集,值域是各段值域的并集. 補充二:復合函數 如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。

    例如: y=2sinX y=2cos(X2+1)

    7.函數單調性

    (1).增函數 設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1f(x2),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.

    注意:1 函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質

    2 必須是對于區間D內的任意兩個自變量x1,x2;當x1

    (2) 圖象的特點 如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.

    (3).函數單調區間與單調性的判定方法 (A)

    定義法: 1 任取x1,x2∈D,且x1

    8.函數的奇偶性 (1)偶函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數. (2).奇函數 一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.

    注意:1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。 2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則-x也一定是定義域內的一個自變量(即定義域關于原點對稱).

    (3)具有奇偶性的函數的圖象的特征 偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.

    總結:利用定義判斷函數奇偶性的格式步驟:

    1 首先確定函數的定義域,并判斷其定義域是否關于原點對稱;

    2 確定f(-x)與f(x)的關系;

    3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數. 注意?。汉瘮刀x域關于原點對稱是函數具有奇偶性的必要條件.

    首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或借助函數的圖象判定 .

    9、函數的解析表達式 (1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域. (2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)

    10.函數最大(小)值(定義見課本p36頁)

    1 利用二次函數的性質(配方法)求函數的最大(小)值2 利用圖象求函數的最大(小)值3 利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);

    如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

    第二章 基本初等函數

    一、指數函數 (一)指數與指數冪的運算

    1.根式的概念:一般地,如果 ,那么 叫做 的 次方根(n th root),其中 >1,且 ∈ *. 當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand)

    . 當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合并成± ( >0).

    由此可得:負數沒有偶次方根;0的任何次方根都是0,

    , 2.分數指數冪 正數的分數指數冪的意義,規定: , 0的正分數指數冪等于0,0的負分數指數冪沒有意義

    指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

    (二)指數函數及其性質

    1、指數函數的概念:一般地,函數 叫做指數函數(exponential ),其中x是自變量,函數的定義域為R. 注意:指數函數的底數的取值范圍,底數不能是負數、零和1.

    2、指數函數的圖象和性質 a>1 0

    (1)在[a,b]上, 值域是 或 ;

    (2)若 ,則 ; 取遍所有正數當且僅當 ;

    (3)對于指數函數 ,總有 ;

    (4)當 時,若 ,則 ; 二、對數函數 (一)對數 1.對數的概念:一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)

    說明:1 注意底數的限制 ,且 ; 2 ; 3 注意對數的書寫格式. 兩個重要對數: 1 常用對數:以10為底的對數 ; 2 自然對數:以無理數 為底的對數的對數 . 對數式與指數式的互化 對數式 指數式 對數底數 ← → 冪底數 對數 ← → 指數 真數 ← → 冪 (二)對數的運算性質 如果 ,且 , , ,那么: 1 · + ; 2 - ; 3 . 注意:換底公式 ( ,且 ; ,且 ; ). 利用換底公式推導下面的結論(1) ;(2) . (二)對數函數 1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變量,函數的定義域是(0,+∞). 注意:1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。 如: , 都不是對數函數,而只能稱其為對數型函數. 2 對數函數對底數的限制: ,且 . 2、對數函數的性質: a>1 0

    (三)冪函數

    1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數. 2、冪函數性質歸納. (1)所有的冪函數在(0,+∞)都有定義,并且圖象都過點(1,1); (2) 時,冪函數的圖象通過原點,并且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸; (3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨于 時,圖象在 軸上方無限地逼近 軸正半軸. 第三章 函數的應用 一、方程的根與函數的零點 1、函數零點的概念:對于函數 ,把使 成立的實數 叫做函數 的零點。 2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即: 方程 有實數根 函數 的圖象與 軸有交點 函數 有零點. 3、函數零點的求法: 求函數 的零點: 1 (代數法)求方程 的實數根; 2 (幾何法)對于不能用求根公式的方程,可以將它與函數 的圖象聯系起來,并利用函數的性質找出零點. 4、二次函數的零點: 二次函數 . 1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點. 2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點. 3)△<0,方程 無實根,二次函數的圖象與軸無交點。

    數學必修一人教版電子課本

    高中數學重點有什么?該怎樣攻克?

    高中數學重點內容還有很多.這些重點都是保持多年來的經驗,他們分析過高考數學的題型,高中數學重點分為以下幾個部分.

    高中數學知識

    一、函數和導數,函數可以說是整個高中數學的關鍵.在高中數學當中,每一個.板塊都需要函數的引導.這是高中數學的一根紐帶.在高考數學中,函數這些內容方只在30分左右,其中包括指數,對數,還有圖像的變化.考察的內容,關鍵是以填空的形式,還有選擇的形式,有的還有在解答題需要讓你畫一些圖像來正確解答.

    二、數列,數列也是高中的重點內容.其實數列在初中的時候我們就經歷過,我們就學過,只不過數列在高中這個階段也是重要的一個版塊兒.他可以讓你算出錢一個數列的數值都是多少?還有等比數列,等差數列,比較好一點的就是這些不用畫圖,像你就可以算出來這一個板塊還是比較簡單,只要你記住一些死公式,往里邊套就好.

    三、三角函數,三角函數也是高中數學重點內容.三畢舉陸角函數的考查一般就是在誘導公式還有倆差公式或者就是證明求解.還有圖像的分析會讓你.算出圖像平移的變化,還有對稱的變化,還有一些單調性,單調區間周期性.最后一個對函數的考查就是用實際例題幾何的手頃綜合.

    四、幾何函數綜合,這種綜合題也是高考比較常見的題型,通常也在二三十分左右梯形,也就是考察一些線性的規劃,還有圓錐的定義圓錐,圓柱都是考察的重點.還會讓你算一些面積,表面積一些體積.還有側面積或者切去某塊兒部分讓你算出它的面積.

    五、向量,向量這個板塊兒是必修科目當中最后一個重點板塊兒.向量我們在剛開始接觸的時候,我們會覺得它是一條射線.關鍵的就是它可以精確地算出圓柱和圓錐的位置關系還可以算出他們的加減法,但是簡答都是會有一定的位置關系和數量,關鍵都是以這種計算為主.

    向量講解

    其實高中數學重點就是在必修的里面.必修是每個高中生都必須學習的,不管是分不分文理科,他們都答擾是會學習的.很多重點都是在必修里面,然而在選秀當中就是講一些統計之類的問題,這都是我們在生活當中就會學到的,所以這些都不是重點,重中之重就是在必修的課本當中.

    猜你喜歡

    主站蜘蛛池模板: 沙坪坝区| 乌审旗| 阳信县| 宜兰市| 达拉特旗| 邯郸市| 深泽县| 临沭县| 乌兰浩特市| 开平市| 蓬溪县| 濉溪县| 和林格尔县| 舟曲县| 莒南县| 辉县市| 维西| 桐庐县| 利川市| 周至县| 赣榆县| 辉县市| 泗阳县| 缙云县| 福安市| 九江市| 保德县| 邢台县| 米泉市| 定结县| 台南县| 岫岩| 靖边县| 古田县| 乳源| 龙山县| 沛县| 砚山县| 神农架林区| 怀远县| 耒阳市|