高等數學有哪些?主要內容包括:數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。是工科、理科、財經類研究生考試的基礎科目。指相對于初等數學而言,數學的對象及方法較為繁雜的一部分。廣義地說,那么,高等數學有哪些?一起來了解一下吧。
高數主要內容包括:數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。
廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的,將其作為中小學階段的初等數學與大學階段的高等數學的過渡。
通常認為,高等數學是由微積分學,較深入塵搜的代數學、幾何學以及它們之間的交叉內容所形成的一門基礎學科。
高數的特點
作為一門基礎科學,高等數學有游粗其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。抽象性和計算性是數學最基本、最顯著的特點,有了高度抽象和統一,我們才能深入地揭示其本質規律,才能使之得到更廣泛的應用。
嚴密的邏輯性是指在數學理論的歸納和整理中,無論是概念和表述,還是判斷和推理,都要運用邏輯派磨歷的規則,遵循思維的規律。所以說,數學也是一種思想方法,學習數學的過程就是思維訓練的過程。人類社會的進步,與數學這門科學的廣泛應用是分不開的。
無窮進入數學,這是高等數學的又一特征。現實世界的各種事物都以有限的形式出現,無窮是對他們的共同本質的一種概括。所以,無窮進入數學是數學高度理論化、抽象化的反映。數學中的無窮以潛無窮和實無窮兩種形式出現。
高等數學包括哪些內容
函式與極限、導數與微分、導數的應用、不定積分、空間解析幾何、多元函式的微分學、多元函式積分學、常微分方程、無窮級數
高等數學主要就是微積分~~~~
一、函式與極限常量與變數
函式
函式的簡單性態
反函式
初等函式
數列的極限
函式的極限
無窮大量與無窮小量
無窮小量的比較
函式連續性
連續函式的性質及初等函式函式連續性
二、導數與微分
導數的概念
函培雹式的和、差求導法則
函式的積、商求導法則
復合函式求導法則
反函式求導法則
高階導數
隱函式及其求導法則
函式的微分
三、導數的應用
微分中值定理
未定式問題
函式單調性的判定法
函式的極值及其求法
函式的最大、最小值及其應用
曲線的凹向與拐點
四、不定積分
不定積分的概念及性質
求不定積分的方法
幾種特殊函式的積分舉例
五、定積分及其應用
定積分的概念
微積分的積分公式
定積分的換元法與分部積分法
廣義積分
六、空間解析幾何
空間直角座標系
方向余弦與方向數
平面與空間直線
曲面與空間曲線
七、多元函式的配彎帆微分學
多元函式概念
二元函式極限及其連續性
偏導數
全微分
多元復合函式的求導法
多元函式的極值
八、多元函式積分學
二重積分的概念及性質
二重積分的計演算法
三重積分的概念及其計演算法
九、常微分方程
微分方程的基本概念
可分離變數的微分方程及齊次方程
線性微分方程
可降階的高階方程
線性微分方程解的結構
二階常系數齊次線性方程的解法
二階常系數非齊次線性方程的解法十、無窮級數
這個問的也太泛了吧→_→工科生怒答,高等數學只是大一的數學一部分(因為還有線性代數),內容主要包括微分(簡單理解為導數滿去了←_←)和積分,一般先教一元函式的微積分,再深入教多元函式。
數列、極限、微積分、空間解析幾何與線性代李褲數、級數、常微分方程。
作為一門基礎科學,高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。
抽象性和計算性是數學最基本、最顯著的特點,有了高度抽象和統一,我們才能深入地揭示其野擾沖本質規律,才能使之得到更廣泛的應頌殲用。
學習方法
在課前最好預習一下,看哪些東西看不懂。聽課時必須十分認真,還可稍微記點筆記。重點聽記自己不懂的地方。
聽了教授的課后,一般還要反重復習,先回憶教授講的課,再重點理解甚至是模仿教授解的題(如高等代數沒入門時可這樣處,多次反復模仿解題,有助于理解),完成作業。
其他信息:
主要學的是函數極限、微積分、級數、向量、不定積分。下面是目錄:
一、上冊:
1函數與極限。
2導數與微分。
3導數的應用
。
4不定積分。
5定積分。
6微分方程。
7多元函數微分法。
8二重積分
二、下冊:
1行列式。
2矩陣。
3向量。
4線性方程組。
5相似矩陣及二次型。
6概率。
7隨機變量及分布。
8隨機變量的數字特征。
9大數定理及中心極限定理。
高等數學是大學必修課之一,分上下冊,一般在大一每個學期學一冊。此書為田玉芳編著,2014年出版,本書可作為高等學校理工類各專業,尤其是工科電子信息類各專業本科生的高等數學教材或教學參考書,也可供學生自學使用。
擴展資料:
在中國理工科各類專業的學生(數學專業除外,數學專業學數學分析),學的數學較難,課本常稱“高等數學”;文史科各類專業的學生,學的數學稍微淺一些,課本常稱“微積分”。理工科的不同專業,文史科的不同專業,深淺程度又各不相同。
研究變量的是高等數學,可高等數學并不只研究變量。至于與“高等數學”相伴的課程通常有:線性代數(數學專業學高等代數),概率論與數理統計(有些數學專業分開學)。
高等數學有其固有的特點,這就是高度的抽象性、嚴密的邏輯性和廣泛的應用性。抽象性和計算性是數學最基本、最顯著的特點,有了高度抽象和統一,我們才能深入地揭示其本質規律,才能使之得到更廣泛的應用。
如果是文科生的話,通常考經濟與管理類的研究生會涉及到高數,包括這樣一高豎肆些內容:
函戚轎數、極限、導數、微分、積分、線性代數、概率論與數理統計。
至于書嘛,主要是高等數學(上)、線性代數、概率論與數理統計三本。
至于前面提到的那些級數纖扒、場論、常微分方程都不會涉及到的。
以上就是高等數學有哪些的全部內容,高數主要內容包括:數列、極限、微積分、空間解析幾何與線性代數、級數、常微分方程。廣義地說,初等數學之外的數學都是高等數學,也有將中學較深入的代數、幾何以及簡單的集合論初步、邏輯初步稱為中等數學的。