日韩国产欧美区_高清电影一区_国产精品日韩精品在线播放_日韩精品三区四区

八年級(jí)上冊(cè)數(shù)學(xué)教案,八上數(shù)學(xué)目標(biāo)電子版

  • 數(shù)學(xué)
  • 2024-01-03

八年級(jí)上冊(cè)數(shù)學(xué)教案?八年級(jí)數(shù)學(xué)上冊(cè)教案篇1 為了更好的引入“反比例函數(shù)”的概念,并能突出重點(diǎn),我采用了課本上的問(wèn)題情境,同時(shí)調(diào)整了課本上提供的“思考”的問(wèn)題的位置,將它放到函數(shù)概念引出之后,讓學(xué)生體會(huì)在生活中有很多反比例關(guān)系。那么,八年級(jí)上冊(cè)數(shù)學(xué)教案?一起來(lái)了解一下吧。

三角形的內(nèi)角和定理

上新,最新2021年秋季人教版來(lái)了:

最新人教版八年級(jí)(初二)數(shù)學(xué)上冊(cè)教學(xué)計(jì)劃及 進(jìn)度表

一、指導(dǎo)思想

以中央關(guān)于教育改革的指示精神以及新《數(shù)學(xué)課程標(biāo)準(zhǔn)》為指導(dǎo),按照學(xué)校教學(xué)工作計(jì)劃的要求,體現(xiàn)“新課程、新標(biāo)準(zhǔn)、新教法”,努力探索“減負(fù)增效”的教育教學(xué)模式。因材施教,通過(guò)有效的措施,激發(fā)學(xué)生興趣,啟發(fā)學(xué)生思考,引導(dǎo)學(xué)生自主探索,鼓勵(lì)學(xué)生合作交流,使學(xué)生真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能、數(shù)學(xué)思想和方法,充分發(fā)展學(xué)生數(shù)學(xué)思維,獲得良好的數(shù)學(xué)教育,全面提高教育教學(xué)質(zhì)量。

為了更好地完成教學(xué)目標(biāo),特制訂2021-2022學(xué)年度第一學(xué)期人教版八年級(jí)(初二)數(shù)學(xué)上冊(cè)教學(xué)計(jì)劃:

二、學(xué)生基本情況分析

本學(xué)期,我所任教的八(1)班、八(2)班共有學(xué)生83人,其中男生42人,女生41人。經(jīng)過(guò)前面的學(xué)習(xí),多數(shù)孩子的數(shù)學(xué)基礎(chǔ)相對(duì)較好,基本形成一些數(shù)學(xué)思維方法,具備一定的應(yīng)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力,但在知識(shí)靈活應(yīng)用上還是有一些欠缺,不少學(xué)生在考試作答時(shí)也比較粗心。進(jìn)入初二,學(xué)生最大的特點(diǎn)是兩極分化比較嚴(yán)重,一部分孩子如魚(yú)得水,另一部分孩子卻感到十分吃力。

人教版八年級(jí)數(shù)學(xué)上冊(cè)教案

八年級(jí)數(shù)學(xué)上冊(cè)教案3篇

數(shù)學(xué)教學(xué)要尊重學(xué)生個(gè)體差異,注重培養(yǎng)學(xué)生自主學(xué)習(xí)的意識(shí),激發(fā)學(xué)生學(xué)習(xí)興趣。你有在數(shù)學(xué)課后寫(xiě)八年級(jí)數(shù)學(xué)教案?來(lái)學(xué)習(xí)它的寫(xiě)法吧。你是否在找正準(zhǔn)備撰寫(xiě)“八年級(jí)數(shù)學(xué)上冊(cè)教案”,下面我收集了相關(guān)的素材,供大家寫(xiě)文參考!

八年級(jí)數(shù)學(xué)上冊(cè)教案篇1

為了更好的引入“反比例函數(shù)”的概念,并能突出重點(diǎn),我采用了課本上的問(wèn)題情境,同時(shí)調(diào)整了課本上提供的“思考”的問(wèn)題的位置,將它放到函數(shù)概念引出之后,讓學(xué)生體會(huì)在生活中有很多反比例關(guān)系。

情境設(shè)置:

汽車從南京開(kāi)往上海,全程約300km,全程所用的時(shí)間t(h)隨v(km/h)的變化而變化。

(1)你能用含v的代數(shù)式來(lái)表示t嗎?

(2)時(shí)間t是速度v的函數(shù)嗎?

設(shè)計(jì)意圖:與前面復(fù)習(xí)內(nèi)容相呼應(yīng),讓同學(xué)們能在“做一做”和“議一儀”中感受兩個(gè)量之間的函數(shù)關(guān)系,同時(shí)也能注意到與所學(xué)“一次函數(shù)”,尤其是“正比例函數(shù)”的不同。從而自然地引入“反比例函數(shù)”概念。

為幫助學(xué)生更深刻的認(rèn)識(shí)和掌握反比例函數(shù)概念,我引導(dǎo)學(xué)生將反比例函數(shù)的一般式進(jìn)行變形,并安排了相應(yīng)的例題。

一般式變形:(其中k均不為0)

通過(guò)對(duì)一般式的變形,讓學(xué)生從“形”上掌握“反比例函數(shù)”的概念,在結(jié)合“思考”的幾個(gè)問(wèn)題,讓學(xué)生從“神”神上體驗(yàn)“反比例函數(shù)”。

初一數(shù)學(xué)分層作業(yè)答案

數(shù)學(xué)教師上課必須要充分備課,寫(xiě)好教案。這是我整理的八年級(jí)上冊(cè)全冊(cè)數(shù)學(xué)教案,希望你能從中得到感悟!

八年級(jí)上冊(cè)全冊(cè)數(shù)學(xué)教案(一)

3.1.1 等腰三角形(一)

教學(xué)目標(biāo)

1.等腰三角形的概念. 2.等腰三角形的性質(zhì). 3.等腰三角形的概念及性質(zhì)的應(yīng)用.

教學(xué)重點(diǎn): 1.等腰三角形的概念及性質(zhì). 2.等腰三角形性質(zhì)的應(yīng)用.

教學(xué)難點(diǎn):等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用.

八年級(jí)上冊(cè)全冊(cè)數(shù)學(xué)教案(二)

教學(xué)過(guò)程

Ⅰ.提出問(wèn)題,創(chuàng)設(shè)情境

在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過(guò)軸對(duì)稱變換來(lái)設(shè)計(jì)一些美麗的圖案.這節(jié)課我們就是從軸對(duì)稱的角度來(lái)認(rèn)識(shí)一些我們熟悉的幾何圖形.來(lái)研究:①三角形是軸對(duì)稱圖形嗎?②什么樣的三角形是軸對(duì)稱圖形?

有的三角形是軸對(duì)稱圖形,有的三角形不是.

問(wèn)題:那什么樣的三角形是軸對(duì)稱圖形?

滿足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形.

我們這節(jié)課就來(lái)認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形.

Ⅱ.導(dǎo)入新課: 要求學(xué)生通過(guò)自己的思考來(lái)做一個(gè)等腰三角形.

作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形.

等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學(xué)們?cè)谧约鹤鞒龅牡妊切沃?,注明它的腰、底邊、頂角和底?

八年級(jí)上冊(cè)全冊(cè)數(shù)學(xué)教案(三)

思考:

1.等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸.

2.等腰三角形的兩底角有什么關(guān)系?

3.頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?

4.底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?

結(jié)論:等腰三角形是軸對(duì)稱圖形.它的對(duì)稱軸是頂角的平分線所在的直線.因?yàn)榈妊切蔚膬裳嗟?,所以把這兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線.

要求學(xué)生把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并看它的兩個(gè)底角有什么關(guān)系.

沿等腰三角形的頂角的平分線對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.

由此可以得到等腰三角形的性質(zhì):

1.等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫(xiě)成“等邊對(duì)等角”).

2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”).

由上面折疊的過(guò)程獲得啟發(fā),我們可以通過(guò)作出等腰三角形的對(duì)稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來(lái)證明這些性質(zhì).同學(xué)們現(xiàn)在就動(dòng)手來(lái)寫(xiě)出這些證明過(guò)程).

如右圖,在△ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p>

所以△BAD≌△CAD(SSS).

所以∠B=∠C.

]如右圖,在△ABC中,AB=AC,作頂角∠BAC的角平分線AD,因?yàn)?/p>

所以△BAD≌△CAD.

所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.

[例1]如圖,在△ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,

求:△ABC各角的度數(shù).

分析:根據(jù)等邊對(duì)等角的性質(zhì),我們可以得到

∠A=∠ABD,∠ABC=∠C=∠BDC,

再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.

再由三角形內(nèi)角和為180°,就可求出△ABC的三個(gè)內(nèi)角.

把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來(lái)表示,這樣過(guò)程就更簡(jiǎn)捷.

解:因?yàn)锳B=AC,BD=BC=AD,

所以∠ABC=∠C=∠BDC.

∠A=∠ABD(等邊對(duì)等角).

設(shè)∠A=x,則 ∠BDC=∠A+∠ABD=2x,

從而∠ABC=∠C=∠BDC=2x.

于是在△ABC中,有

∠A+∠ABC+∠C=x+2x+2x=180°,

解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.

[師]下面我們通過(guò)練習(xí)來(lái)鞏固這節(jié)課所學(xué)的知識(shí).

Ⅲ.隨堂練習(xí):1.課本P51練習(xí) 1、2、3. 2.閱讀課本P49~P51,然后小結(jié).

Ⅳ.課時(shí)小結(jié)

這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用.等腰三角形是軸對(duì)稱圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等腰三角形的對(duì)稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高.

我們通過(guò)這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們.

Ⅴ.作業(yè): 課本P56習(xí)題12.3第1、2、3、4題.

板書(shū)設(shè)計(jì)

12.3.1.1 等腰三角形

一、設(shè)計(jì)方案作出一個(gè)等腰三角形

二、等腰三角形性質(zhì): 1.等邊對(duì)等角 2.三線合一

八年級(jí)上冊(cè)全冊(cè)數(shù)學(xué)教案相關(guān)文章:

1. 8年級(jí)上冊(cè)數(shù)學(xué)教案

2. 初中八年級(jí)上冊(cè)數(shù)學(xué)教案

3. 八年級(jí)數(shù)學(xué)上冊(cè)優(yōu)秀教案范文3篇

4. 八年級(jí)數(shù)學(xué)上冊(cè)教案范文3篇

5. 8年級(jí)上冊(cè)數(shù)學(xué)教案

八年級(jí)上初二數(shù)學(xué)課時(shí)單元

對(duì)于數(shù)學(xué)老師而言,做好教案,就是上好課的前提!為此,下面我就和大家介紹冀教版八年級(jí)上冊(cè)數(shù)學(xué)一元一次不等式教案,希望對(duì)大家有幫助!

冀教版八年級(jí)上冊(cè)數(shù)學(xué)一元一次不等式教案

教學(xué)目標(biāo):

知識(shí)與技能:會(huì)解含有分母的一元一次不等式;能夠用不等式表達(dá)數(shù)量之間的不等關(guān)系;能夠確定不等式的整數(shù)解。

過(guò)程與方法:經(jīng)歷解方程和解不等式兩種過(guò)程的比較,體會(huì)類比思想,發(fā)展學(xué)生的數(shù)學(xué)思考水平。

情感態(tài)度、價(jià)值觀:通過(guò)一元一次不等式的學(xué)習(xí),培養(yǎng)學(xué)生認(rèn)真、堅(jiān)持等良好學(xué)習(xí)習(xí)慣。.

教材分析:

本節(jié)教材首先讓學(xué)生動(dòng)手“做一做”解兩個(gè)不等式;之后讓“大家談?wù)劇苯庖辉淮尾坏仁脚c解一元一次方程的異同點(diǎn);最后是關(guān)于通過(guò)列不等式表示數(shù)量之間不等關(guān)系的例題2、3,其中例3涉及到了不等式的正解數(shù)解問(wèn)題。關(guān)于解含有分母的一元一次不等式,學(xué)生在去分母這一部可能容易出錯(cuò),可以采用通過(guò)學(xué)生深度解決、師生總結(jié)交流方法、鞏固應(yīng)用等方式處理。關(guān)于一元一次不等式的整數(shù)解問(wèn)題,學(xué)生確實(shí)會(huì)有一定困難,主要是思考不夠認(rèn)真,缺少方法等原因,教師要注重借助數(shù)軸的學(xué)法指導(dǎo)。

教學(xué)重點(diǎn):

1、含有分母的一元一次不等式的解法

2、用不等式表達(dá)數(shù)量之間的不等關(guān)系

3、確定不等式的整數(shù)解

教學(xué)難點(diǎn):

1、解含有分母的一元一次不等式時(shí),去分母這一部的準(zhǔn)確性。

7年級(jí)下冊(cè)數(shù)學(xué)電子書(shū)

#初二#導(dǎo)語(yǔ): 初二數(shù)學(xué)學(xué)習(xí)過(guò)程中,需要掌握好每一個(gè)重要的知識(shí)點(diǎn)。以下是整理的2017人教版數(shù)學(xué)八年級(jí)上冊(cè)教案【四篇】,僅供大家參考。

15.4.1因式分解

教學(xué)目標(biāo)

1.知識(shí)與技能

了解因式分解的意義,以及它與整式乘法的關(guān)系.

2.過(guò)程與方法

經(jīng)歷從分解因數(shù)到分解因式的類比過(guò)程,掌握因式分解的概念,感受因式分解在解決問(wèn)題中的作用.

3.情感、態(tài)度與價(jià)值觀

在探索因式分解的方法的活動(dòng)中,培養(yǎng)學(xué)生有條理的思考、表達(dá)與交流的能力,培養(yǎng)積極的進(jìn)取意識(shí),體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在含義與價(jià)值.

重、難點(diǎn)與關(guān)鍵

1.重點(diǎn):了解因式分解的意義,感受其作用.

2.難點(diǎn):整式乘法與因式分解之間的關(guān)系.

3.關(guān)鍵:通過(guò)分解因數(shù)引入到分解因式,并進(jìn)行類比,加深理解.

教學(xué)方法

采用“激趣導(dǎo)學(xué)”的教學(xué)方法.

教學(xué)過(guò)程

一、創(chuàng)設(shè)情境,激趣導(dǎo)入

【問(wèn)題牽引】

請(qǐng)同學(xué)們探究下面的2個(gè)問(wèn)題:

問(wèn)題1:720能被哪些數(shù)整除?談?wù)勀愕南敕ǎ?

問(wèn)題2:當(dāng)a=102,b=98時(shí),求a2-b2的值.

二、豐富聯(lián)想,展示思維

探索:你會(huì)做下面的填空嗎?

1.ma+mb+mc=()();

2.x2-4=()();

3.x2-2xy+y2=()2.

【師生共識(shí)】把一個(gè)多項(xiàng)式化成幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解,也叫做分解因式.

三、小組活動(dòng),共同探究

【問(wèn)題牽引】

(1)下列各式從左到右的變形是否為因式分解:

①(x+1)(x-1)=x2-1;

②a2-1+b2=(a+1)(a-1)+b2;

③7x-7=7(x-1).

(2)在下列括號(hào)里,填上適當(dāng)?shù)捻?xiàng),使等式成立.

①9x2(______)+y2=(3x+y)(_______);

②x2-4xy+(_______)=(x-_______)2.

四、隨堂練習(xí),鞏固深化

課本練習(xí).

【探研時(shí)空】計(jì)算:993-99能被100整除嗎?

五、課堂總結(jié),發(fā)展?jié)撃?

由學(xué)生自己進(jìn)行小結(jié),教師提出如下綱目:

1.什么叫因式分解?

2.因式分解與整式運(yùn)算有何區(qū)別?

六、布置作業(yè),專題突破

選用補(bǔ)充作業(yè).

板書(shū)設(shè)計(jì)

15.4.2提公因式法

教學(xué)目標(biāo)

1.知識(shí)與技能

能確定多項(xiàng)式各項(xiàng)的公因式,會(huì)用提公因式法把多項(xiàng)式分解因式.

2.過(guò)程與方法

使學(xué)生經(jīng)歷探索多項(xiàng)式各項(xiàng)公因式的過(guò)程,依據(jù)數(shù)學(xué)化歸思想方法進(jìn)行因式分解.

3.情感、態(tài)度與價(jià)值觀

培養(yǎng)學(xué)生分析、類比以及化歸的思想,增進(jìn)學(xué)生的合作交流意識(shí),主動(dòng)積極地積累確定公因式的初步經(jīng)驗(yàn),體會(huì)其應(yīng)用價(jià)值.

重、難點(diǎn)與關(guān)鍵

1.重點(diǎn):掌握用提公因式法把多項(xiàng)式分解因式.

2.難點(diǎn):正確地確定多項(xiàng)式的公因式.

3.關(guān)鍵:提公因式法關(guān)鍵是如何找公因式.方法是:一看系數(shù)、二看字母.公因式的系數(shù)取各項(xiàng)系數(shù)的公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

教學(xué)方法

采用“啟發(fā)式”教學(xué)方法.

教學(xué)過(guò)程

一、回顧交流,導(dǎo)入新知

【復(fù)習(xí)交流】

下列從左到右的變形是否是因式分解,為什么?

(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2.

問(wèn)題:

1.多項(xiàng)式mn+mb中各項(xiàng)含有相同因式嗎?

2.多項(xiàng)式4x2-x和xy2-yz-y呢?

請(qǐng)將上述多項(xiàng)式分別寫(xiě)成兩個(gè)因式的乘積的形式,并說(shuō)明理由.

【教師歸納】我們把多項(xiàng)式中各項(xiàng)都有的公共的因式叫做這個(gè)多項(xiàng)式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

概念:如果一個(gè)多項(xiàng)式的各項(xiàng)含有公因式,那么就可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積形式,這種分解因式的方法叫做提公因式法.

二、小組合作,探究方法

【教師提問(wèn)】多項(xiàng)式4x2-8x6,16a3b2-4a3b2-8ab4各項(xiàng)的公因式是什么?

【師生共識(shí)】提公因式的方法是先確定各項(xiàng)的公因式再將多項(xiàng)式除以這個(gè)公因式得到另一個(gè)因式,找公因式一看系數(shù)、二看字母,公因式的系數(shù)取各項(xiàng)系數(shù)的公約數(shù);字母取各項(xiàng)相同的字母,并且各字母的指數(shù)取最低次冪.

三、范例學(xué)習(xí),應(yīng)用所學(xué)

【例1】把-4x2yz-12xy2z+4xyz分解因式.

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

【例2】分解因式,3a2(x-y)3-4b2(y-x)2

【思路點(diǎn)撥】觀察所給多項(xiàng)式可以找出公因式(y-x)2或(x-y)2,于是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)2?3a2(y-x)+4b2(y-x)2]

=-(y-x)2[3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)2?3a2(x-y)-4b2(x-y)2

=(x-y)2[3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

【例3】用簡(jiǎn)便的方法計(jì)算:0.84×12+12×0.6-0.44×12.

【教師活動(dòng)】引導(dǎo)學(xué)生觀察并分析怎樣計(jì)算更為簡(jiǎn)便.

解:0.84×12+12×0.6-0.44×12

=12×(0.84+0.6-0.44)

=12×1=12.

【教師活動(dòng)】在學(xué)生完全例3之后,指出例3是因式分解在計(jì)算中的應(yīng)用,提出比較例1,例2,例3的公因式有什么不同?

四、隨堂練習(xí),鞏固深化

課本P167練習(xí)第1、2、3題.

【探研時(shí)空】

利用提公因式法計(jì)算:

0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

五、課堂總結(jié),發(fā)展?jié)撃?

1.利用提公因式法因式分解,關(guān)鍵是找準(zhǔn)公因式.在找公因式時(shí)應(yīng)注意:(1)系數(shù)要找公約數(shù);(2)字母要找各項(xiàng)都有的;(3)指數(shù)要找最低次冪.

2.因式分解應(yīng)注意分解徹底,也就是說(shuō),分解到不能再分解為止.

六、布置作業(yè),專題突破

課本P170習(xí)題15.4第1、4(1)、6題.

板書(shū)設(shè)計(jì)

15.4.3公式法(一)

教學(xué)目標(biāo)

1.知識(shí)與技能

會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.

2.過(guò)程與方法

經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過(guò)程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.

3.情感、態(tài)度與價(jià)值觀

培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問(wèn)題中的應(yīng)用價(jià)值.

重、難點(diǎn)與關(guān)鍵

1.重點(diǎn):利用平方差公式分解因式.

2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.

3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問(wèn)題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來(lái).

教學(xué)方法

采用“問(wèn)題解決”的教學(xué)方法,讓學(xué)生在問(wèn)題的牽引下,推進(jìn)自己的思維.

教學(xué)過(guò)程

一、觀察探討,體驗(yàn)新知

【問(wèn)題牽引】

請(qǐng)同學(xué)們計(jì)算下列各式.

(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).

【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.

(1)(a+5)(a-5)=a2-52=a2-25;

(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.

【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

1.分解因式:a2-25;2.分解因式16m2-9n.

【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:

(1)a2-25=a2-52=(a+5)(a-5).

(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).

【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.

平方差公式:a2-b2=(a+b)(a-b).

評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).

二、范例學(xué)習(xí),應(yīng)用所學(xué)

【例1】把下列各式分解因式:(投影顯示或板書(shū))

(1)x2-9y2;(2)16x4-y4;

(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;

(5)m2(16x-y)+n2(y-16x).

【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.

【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.

【學(xué)生活動(dòng)】分四人小組,合作探究.

解:(1)x2-9y2=(x+3y)(x-3y);

(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);

(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);

(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);

(5)m2(16x-y)+n2(y-16x)

=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).

15.4.3公式法(二)

教學(xué)目標(biāo)

1.知識(shí)與技能

領(lǐng)會(huì)運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.

2.過(guò)程與方法

經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過(guò)程,感受逆向思維的意義,掌握因式分解的基本步驟.

3.情感、態(tài)度與價(jià)值觀

培養(yǎng)良好的推理能力,體會(huì)“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

重、難點(diǎn)與關(guān)鍵

1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會(huì)應(yīng)用.

2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.

3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問(wèn)題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的.

教學(xué)方法

采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

教學(xué)過(guò)程

一、回顧交流,導(dǎo)入新知

【問(wèn)題牽引】

1.分解因式:

(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

(3)x2-0.01y2.

【知識(shí)遷移】

2.計(jì)算下列各式:

(1)(m-4n)2;(2)(m+4n)2;

(3)(a+b)2;(4)(a-b)2.

【教師活動(dòng)】引導(dǎo)學(xué)生完成下面兩道題,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

3.分解因式:

(1)m2-8mn+16n2(2)m2+8mn+16n2;

(3)a2+2ab+b2;(4)a2-2ab+b2.

【學(xué)生活動(dòng)】從逆向思維的角度入手,很快得到下面答案:

解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;

(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.

【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

二、范例學(xué)習(xí),應(yīng)用所學(xué)

【例1】把下列各式分解因式:

(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;

(3)(x+y)2-14(x+y)+49;(4)+n4.

【例2】如果x2+axy+16y2是完全平方,求a的值.

【思路點(diǎn)撥】根據(jù)完全平方式的定義,解此題時(shí)應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.

三、隨堂練習(xí),鞏固深化

課本P170練習(xí)第1、2題.

【探研時(shí)空】

1.已知x+y=7,xy=10,求下列各式的值.

(1)x2+y2;(2)(x-y)2

2.已知x+=-3,求x4+的值.

四、課堂總結(jié),發(fā)展?jié)撃?

由于多項(xiàng)式的因式分解與整式乘法正好相反,因此把整式乘法公式反過(guò)來(lái)寫(xiě),就得到多項(xiàng)式因式分解的公式,主要的有以下三個(gè):

a2-b2=(a+b)(a-b);

a2±ab+b2=(a±b)2.

在運(yùn)用公式因式分解時(shí),要注意:

(1)每個(gè)公式的形式與特點(diǎn),通過(guò)對(duì)多項(xiàng)式的項(xiàng)數(shù)、次數(shù)等的總體分析來(lái)確定,是否可以用公式分解以及用哪個(gè)公式分解,通常是,當(dāng)多項(xiàng)式是二項(xiàng)式時(shí),考慮用平方差公式分解;當(dāng)多項(xiàng)式是三項(xiàng)時(shí),應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項(xiàng)式不一定能直接用公式,需要進(jìn)行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項(xiàng)式各項(xiàng)有公因式時(shí),應(yīng)該首先考慮提公因式,然后再運(yùn)用公式分解.

五、布置作業(yè),專題突破

以上就是八年級(jí)上冊(cè)數(shù)學(xué)教案的全部?jī)?nèi)容,(一)教材結(jié)構(gòu) 2021秋季人教版八年級(jí)(初二)數(shù)學(xué)上冊(cè)教材共有五章,依次為:《三角形》《全等三角形》《軸對(duì)稱》《整式的乘法與因式分解》和《分式》。每章的開(kāi)始,配有反映本章主要內(nèi)容的章前圖和引言。

猜你喜歡

話題標(biāo)簽

  • 歷史學(xué)專碩,歷史學(xué)專碩有哪些學(xué)校
  • 初中數(shù)學(xué)解題方法與技巧,初中數(shù)學(xué)138個(gè)解題方法
  • 德國(guó)數(shù)學(xué)家高斯,德國(guó)數(shù)學(xué)家高斯的故事
  • 我喜歡吃西瓜英語(yǔ),我喜歡吃西瓜英語(yǔ)作文
主站蜘蛛池模板: 广东省| 平武县| 色达县| 嘉鱼县| 峨山| 左云县| 金门县| 顺义区| 墨竹工卡县| 哈尔滨市| 特克斯县| 美姑县| 连南| 江门市| 康乐县| 上犹县| 江安县| 隆回县| 府谷县| 栾川县| 田林县| 阳曲县| 乌兰察布市| 浪卡子县| 福泉市| 波密县| 新泰市| 乐业县| 嘉荫县| 抚松县| 高阳县| 贡山| 大新县| 许昌市| 瓮安县| 牡丹江市| 和静县| 孝感市| 本溪| 丰顺县| 赞皇县|