日韩国产欧美区_高清电影一区_国产精品日韩精品在线播放_日韩精品三区四区

當前位置: 首頁 > 學科分類 > 數學

初中人教版數學,初中人教版數學目錄

  • 數學
  • 2023-05-23
目錄
  • 初中人教版數學知識點總結
  • 數學人教版初中知識點
  • 最新人教版初中數學教材目錄
  • 初中數學全套教案pdf
  • 初中數學電子版教材

  • 初中人教版數學知識點總結

    常見的初中數學公式

    1 過兩點有且只有一條直線

    2 兩點之間線段最短

    3 同角或等角的補角相等

    4 同角或等角的余角相等

    5 過一點有且只有一條直線和已知直線垂直

    6 直線外一點與直線上各點連接的所有線段中,垂線段最短

    7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

    8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

    9 同位角相等,兩直線平行

    10 內錯角相等,兩直線平行

    11 同旁內角互補,兩直線平行

    12兩直線平行,同位角相等

    13 兩直線平行,內錯角相等

    14 兩直線平行,同旁內角互補

    15 定理 三角形兩邊的和大于第三邊

    16 推論 三角形兩邊的差小于第三邊

    17 三角形內角和定理 三角形三個內角的和等于180°

    18 推論1 直角三角形的兩個銳角互余

    19 推論2 三角形的一個外角等于和它不相鄰的兩個內角的和

    20 推論3 三角形的一個外角大于任何一個和它不相鄰的內角

    21 全等三角形的對應邊、對應角相等

    22邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等

    23 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

    24 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等

    25 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等

    26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等

    27 定理1 在角的平分線上的點到這個角的兩邊的距離相等

    28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上

    29 角的平分線是到角的兩邊距離相等的所有點的集合

    30 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)

    31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊

    32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

    33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°

    34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

    35 推論1 三個角都相等的三角形是等邊三角形

    36 推論 2 有一個角等于60°的等腰三角形是等邊三角形

    37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

    38 直角三角形斜邊上的中線等于斜邊上的一半

    39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等

    40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

    41 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

    42 定理1 關于某條直線對稱的兩個圖形是全等形

    43 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

    44定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

    45逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱

    46勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

    47勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形

    48定理 四邊形的內角和等于360°

    49四邊形的外角和等于360°

    50多邊形內角和定理 n邊形的內角的和等于(n-2)×180°

    51推論 任意多邊的外角和等跡塵于360°

    52平行四邊形性質定理1 平行四邊形的對角相等

    53平行四邊形性質定理2 平行四邊形的對邊相等

    54推論 夾在兩條平行線間的平行線段相等

    55平行四邊形性質定理3 平行四邊形的對角線互相平分

    56平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形

    57平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形手攔

    58平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形

    59平行四邊形判定定理4 一組對畢州胡邊平行相等的四邊形是平行四邊形

    60矩形性質定理1 矩形的四個角都是直角

    61矩形性質定理2 矩形的對角線相等

    62矩形判定定理1 有三個角是直角的四邊形是矩形

    63矩形判定定理2 對角線相等的平行四邊形是矩形

    64菱形性質定理1 菱形的四條邊都相等

    65菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角

    66菱形面積=對角線乘積的一半,即S=(a×b)÷2

    67菱形判定定理1 四邊都相等的四邊形是菱形

    68菱形判定定理2 對角線互相垂直的平行四邊形是菱形

    69正方形性質定理1 正方形的四個角都是直角,四條邊都相等

    70正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

    71定理1 關于中心對稱的兩個圖形是全等的

    72定理2 關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分

    73逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一

    點平分,那么這兩個圖形關于這一點對稱

    74等腰梯形性質定理 等腰梯形在同一底上的兩個角相等

    75等腰梯形的兩條對角線相等

    76等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形

    77對角線相等的梯形是等腰梯形

    78平行線等分線段定理 如果一組平行線在一條直線上截得的線段

    相等,那么在其他直線上截得的線段也相等

    79 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰

    80 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第

    三邊

    81 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它

    的一半

    82 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的

    一半 L=(a+b)÷2 S=L×h

    83 (1)比例的基本性質 如果a:b=c:d,那么ad=bc

    如果ad=bc,那么a:b=c:d

    84 (2)合比性質 如果a/b=c/d,那么(a±b)/b=(c±d)/d

    85 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么

    (a+c+…+m)/(b+d+…+n)=a/b

    86 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應

    線段成比例

    87 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

    88 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊

    89 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

    90 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

    91 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA)

    92 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

    93 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS)

    94 判定定理3 三邊對應成比例,兩三角形相似(SSS)

    95 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三

    角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

    96 性質定理1 相似三角形對應高的比,對應中線的比與對應角平

    分線的比都等于相似比

    97 性質定理2 相似三角形周長的比等于相似比

    98 性質定理3 相似三角形面積的比等于相似比的平方

    99 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等

    于它的余角的正弦值

    100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等

    于它的余角的正切值

    101圓是定點的距離等于定長的點的集合

    102圓的內部可以看作是圓心的距離小于半徑的點的集合

    103圓的外部可以看作是圓心的距離大于半徑的點的集合

    104同圓或等圓的半徑相等

    105到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半

    徑的圓

    106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直

    平分線

    107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

    108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距

    離相等的一條直線

    109定理 不在同一直線上的三點確定一個圓.

    110垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

    111推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

    ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

    ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

    112推論2 圓的兩條平行弦所夾的弧相等

    113圓是以圓心為對稱中心的中心對稱圖形

    114定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦

    相等,所對的弦的弦心距相等

    115推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩

    弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

    116定理 一條弧所對的圓周角等于它所對的圓心角的一半

    117推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

    118推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所

    對的弦是直徑

    119推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形

    120定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它

    的內對角

    121①直線L和⊙O相交 d<r

    ②直線L和⊙O相切 d=r

    ③直線L和⊙O相離 d>r

    122切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線

    123切線的性質定理 圓的切線垂直于經過切點的半徑

    124推論1 經過圓心且垂直于切線的直線必經過切點

    125推論2 經過切點且垂直于切線的直線必經過圓心

    126切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等,

    圓心和這一點的連線平分兩條切線的夾角

    127圓的外切四邊形的兩組對邊的和相等

    128弦切角定理 弦切角等于它所夾的弧對的圓周角

    129推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

    130相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積

    相等

    131推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的

    兩條線段的比例中項

    132切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割

    線與圓交點的兩條線段長的比例中項

    133推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

    134如果兩個圓相切,那么切點一定在連心線上

    135①兩圓外離 d>R+r ②兩圓外切 d=R+r

    ③兩圓相交 R-r<d<R+r(R>r)

    ④兩圓內切 d=R-r(R>r) ⑤兩圓內含d<R-r(R>r)

    136定理 相交兩圓的連心線垂直平分兩圓的公共弦

    137定理 把圓分成n(n≥3):

    ⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

    ⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

    138定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

    139正n邊形的每個內角都等于(n-2)×180°/n

    140定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

    141正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長

    142正三角形面積√3a/4 a表示邊長

    143如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為

    360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

    144弧長計算公式:L=n兀R/180

    145扇形面積公式:S扇形=n兀R^2/360=LR/2

    146內公切線長= d-(R-r) 外公切線長= d-(R+r)

    (還有一些,大家幫補充吧)

    數學人教版初中知識點

    關于人教新版與北師大版初中數學的區別主要是編寫順序不同。現在的教材都是根據初中數學課程標準編寫的,知識內容區別不大,主要是各章出現的順序可能不同。最初的北師大版習題很少,說是減輕學生負擔,但學生由于練習少,掌握知識不太好,后來再編時就增多了練習。

    人教版教材老版本一直以邏輯嚴密,知識編排層次清晰著稱,是許多老教師老專家多年修訂成的。

    從兩種版本教材比較中

    (1)、以社會為本、知識為中心的課程教材觀轉變為以人為本的課程教材觀。

    (2)、在教材的內容上,本著削枝強干、刪繁就簡、加強基礎、突出本質的原則,對義務教育階段孝好的數學內容進行統盤考慮。

    (3)、在教材結構上,將減少內容繁復的程度,在螺旋上升的基礎上使知識結構更化、簡約化,搜薯強化基本內容,突出數學本質,減少不必要的反復,以便于學習的遷移和提高世慎者教學效率。

    (4)、在教材的呈現形式上,將充分考慮學生的年齡特點和認知規律,加強與學生生活和現實社會的聯系。

    最新人教版初中數學教材目錄

    一、出版時間不同

    1、人教版初中數學:是2012年人民教育出版社出版的圖書。

    2、北師大版初中數學:是2009年11月由北京指告罩師范大學出版社出版的圖書。

    二、作者不同

    1、人教版初中唯鬧數學:作者是吳江媛。

    2、北師大版初中數學:作者是人民教育出版社、課程教材研究所中學數學課程教材研究開發中心。

    三、章節不同

    1、人教版初中數學:分為有理數、整友喊式的加減、相交線與平行線、平行線及其判定。

    2、北師大版初中數學:分為四個章節,分別是有理數,整式的加減,一元一次方程,幾何圖形初步。

    參考資料來源:-初中數學

    參考資料來源:-數學七年級上冊

    初中數學全套教案pdf

    高中數學合集

    1znmI8mJTas01m1m03zCRfQ

    ?pwd=1234

    1234

    簡介:高中肢游數學優質資料,包括:試題試卷、課羨返件、教兄饑饑材、、各大名師網校合集。

    初中數學電子版教材

    一、出版時間不同

    1、人教版初中數學:是2012年人民教育出版社出版的圖書。

    2、北師大版初中數學:是2009年11月由北京師范大學出版社出版的圖書。

    二、作者不同

    1、人教版初中數學:作者是吳江媛。

    2、北師大版初中數學:作者是人民教育出版社、課程教材研究所中學數學課程教材研究開發中心。

    三、章節不同

    1、人教版初中數學:分為有理數、整式的加減、相交線與平行線、平行線及其判定。

    2、北師大版初中數學:分為四個章節,分別是有理數,整式的加減,一元一次方程,幾何圖形初步。

    初中數學造成分化的原因

    1、被動學習

    許多同學進初中入后,還像小學那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權。表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”。

    2、學不得法

    老師上課一般都要講清緩改知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法。

    而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯系,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬腔哪緩背。

    也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

    3、不重視基礎

    一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高騖遠,重“量”輕“質”,陷入題海。到正規作業或考試中不是演算出錯就是中途“卡殼”。

    4、思維方式和學習方法不適應數學學習要求

    初二階段是數學學習分化最明顯的階段。一個重要原因是初中階段數學課程對學生抽象邏輯思維能力要求有了明顯提高。

    而初二學生正處于由直觀形象思維為主向以抽象邏輯思維為主過渡的又一個關鍵期,沒有形成比較成熟的抽象邏輯思維方式,而且學生個體差異也比較大,有的抽象邏輯思伍模維能力發展快一些,有的則慢一些,因此表現出數學學習接受能力的差異。

    除了年齡特征因素以外,更重要的是教師沒有很好地根據學生的實際和教學要求去組織教學活動,指導學生掌握有效的學習方法,促進學生抽象邏輯思維的發展,提高學習能力和學習適應性。

    猜你喜歡

    主站蜘蛛池模板: 新平| 新晃| 赣榆县| 东阳市| 东方市| 南部县| 满城县| 夏邑县| 来宾市| 山东| 呼和浩特市| 和田市| 巴彦县| 策勒县| 固镇县| 舒城县| 班玛县| 平湖市| 思南县| 白朗县| 临夏市| 中宁县| 乌鲁木齐市| 姚安县| 黑河市| 神农架林区| 凤城市| 朝阳市| 泗水县| 廊坊市| 肇州县| 鹤壁市| 四会市| 梅州市| 金寨县| 买车| 全州县| 丰县| 南靖县| 靖宇县| 崇仁县|