介紹數學?你好,數學整體上的感念:數學是研究數量、結構、變化、空間以及信息等概念的一門學科。數學是人類對事物的抽象結構與模式進行嚴格描述的一種通用手段,可以應用于現實世界的任何問題,所有的數學對象本質上都是人為定義的。那么,介紹數學?一起來了解一下吧。
數學最初是從結繩記事開始的.大約在三百萬年前,人們的活動是集體性質的,打獵捕食都是在一起,所以“慧森產品”頃碧山也就必須平均分配雀中,這樣人們漸漸產生了數量的概念,然后用繩子記數,就產生了數學。
很多同學都想多了解一些數學知識,我整理了一些數學的歷史,大家一起來看看數學是怎么出現的吧。
數學的由來
數學,起源于人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語意思是“學問的基礎”。
“數學”一詞是來自希臘語,字面意思有學習、科學之意。它起源于人類早期的生產活動,其基本概念的精煉早在古埃及、美索不達米亞及古印度就已經出現。
在中國古代,數學叫作算術,又稱算學,最后才改為數學.中國古代的算術是六藝之一(六藝中稱為“數”)。
數學主要的學科首要產生于商業上計算的需要、了解數與數之間的關系、測量土地及預測天文事件。這四種需要大致地與數量、結構、空間及變化(即算術、代數、幾何及分析)等數學上廣泛的領域相關連著。
數學的發展歷史
已知最古老的數學是發現于斯威士蘭列朋波山的列朋波骨,大約襲老仔是公元拍汪前35,000年的遺物。它是一支狒狒的腓骨,上面被刻意切割出29個不同的缺口,使用計數婦女及跟蹤婦女的月經周期。相似的史前遺物也在非洲和法國出土,大約有35,000至20,000年之久,都與量化時間有關。
早期中國數學和世界其它地方的數學有很大不同,因此可以合理認為是獨立發展的。
中國古代數學的發展
魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利于數學從理論上加以凱春提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代數學體系奠定了理論基礎。 趙爽是中國古代對數學定理和公式進行證明與推導的最早的數學家之一。他在《周髀算經》書中補充的“勾股圓方圖及注”和“日高圖及注”是十分重要的數學文獻。在“勾股圓方圖及注”中他提出用弦圖證明勾股定理和解勾股形的五個公式;在“日高圖及注”中,他用圖形面積證明漢代普遍應用的重差公式,趙爽的工作是帶有開創性的,在中國古代數學發展中占有重要地位。 劉徽約與趙爽同時,他繼承和發展了戰國時期名家和墨家的思想,主張對一些數學名詞特別是重要的數學概念給以嚴格的定義,認為對數學知識必須進行“析理”,才能使數學著作簡明嚴密,利于讀者。他的《九章算術》注不僅是對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且在論述的過程中有很大的發展。劉徽創造割圓術,利用極限的思想證明圓的面積公式,并首次用理論的方法算得圓周率為 157/50和 3927/1250。
1、數學(漢語拼音:shùxué;希臘語:μαθηματικ;英語:mathematics或maths),其英語源自于古希臘語的μθημα(máthēma),有學習、學問、科學之意。古希臘學者視其為哲學之起點,“學問的基礎”。另外,還有個較狹隘襪盯且技術性的意義—“數學研究”。即使在悄信其語源內,其形容詞意義凡與學習有關啟好輪的,亦被用來指數學。2、數學是人類對事物卜鉛的抽兄弊雹象結構與模式進行嚴格描述的一種通用手段,可以應用于現實世界的任何問題,所有羨帆的數學對象本質上都是人為定義的。從這個意義上,數學屬于形式科學,而不是自然科學。不同的數學家和哲學家對數學的確切范圍和定義有一系列的看法。
數學(mathematics或maths,來自希臘語,“máthēma”;經常被縮寫為“math”),是研究數量、結構、變化、空間以及信息等概念的一門學科,從某種角度看屬于形式科學的一種。數學家和哲學家對數學的確切范圍和定義有一系列的看法。
而在人類歷史發展和社會生活型盯握中,數學也發揮著不可替代的作用,也是學習和研究現代科學技術必不可少的基本。
在中國古代,數學叫作算術,又稱算學,最后才改為數學.中國古代的算術是六藝之一(六藝中稱為“數”).
數學起源于人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,并能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻.
基礎數學的知識與運用是個人與團體生活中不可或缺的則旁一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處于獨立的狀態.
代數學可以說是最為人們廣泛接受的“數學”.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究“數”的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支.
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯系到了一起.從那以后,我們終于可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其后更發展出更加精微的微積分.
現時數學已包括多個分支.創立于二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹.他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……).
擴展資料:
數學分支
一、數學史
二、數理邏輯與數學基礎a:演繹邏輯學(亦稱符號邏輯學)b:證明論 (亦稱元數學) c:遞歸論 d:模型論 e:公理集合論 f:數學基礎 g:數理邏輯與數學基礎其他學科
三、數論
a:初等數論 b:解析數論 c:代數數論 d:超越數論 e:丟番圖逼近 f:數的幾何 g:概率數論 h:計算數論 i:數論其他學科
四、代數學
a:線性代數 b:群論 c:域論 d:李群 e:李代數 f:Kac-Moody代數 g:環論 (包括交換環與交換代數,結合環與結合代數,非結合環與非結 合代數等) h:模論 i:格論 j:泛代數理論 k:范疇論 l:同調代數 m:代數K理論 n:微分代數 o:代數編碼理論 p:代數學其他學科
五、代數幾何學
六、幾何學
a:幾何學基礎 b:歐氏幾何學 c:非歐幾何學 (包括黎曼幾何學等) d:球面幾何學 e:向量和張量分析 f:仿射幾何學 g:射影幾何學 h:微分幾何學 i:分數維幾何 j:計算幾何學 k:幾何學其他學科
七、拓撲學
a:點集拓撲學 b:代數拓撲學 c:同倫論 d:低維拓撲學 e:同調論 f:維數論 g:格上拓撲學 h:纖維叢論 i:幾何拓撲學 j:奇點理論 k:微分拓撲學 l:拓撲學其他學科
八、數學分析
a:微分學 b:積分學 c:級數論 d:數學分析其他學科
九、非標準分析
十、函數論
a:實變函數論 b:單復變函數論 c:多復變函數論 d:函數逼近論 e:調和分析 f:復流形 g:特殊函數論 h:函數論其他學科
十一、常微分方程
a:定性理論 b:穩定性理論 c:解析理論 d:常微分方程其他學科
十二、偏微分方程
a:橢圓型偏微分方程 b:雙曲型偏微分方程 c:拋物型偏微分方程 d:非線性偏微分方程 e:偏微分方程其他學科
十三、動力
a:微分動力 b:拓撲動力 c:復動力 d:動力其他學科
十四、積分方程
十五、泛函分卜慶析
a:線性算子理論 b:變分法 c:拓撲線性空間 d:希爾伯特空間 e:函數空間 f:巴拿赫空間 g:算子代數 h:測度與積分 i:廣義函數論 j:非線性泛函分析 k:泛函分析其他學科
十六、計算數學
a:插值法與逼近論 b:常微分方程數值解 c:偏微分方程數值解 d:積分方程數值解 e:數值代數 f:連續問題離散化方法 g:隨機數值實驗 h:誤差分析 i:計算數學其他學科
十七、概率論
a:幾何概率 b:概率分布 c:極限理論 d:隨機過程 (包括正態過程與平穩過程、點過程等) e:馬爾可夫過程 f:隨機分析 g:鞅論 h:應用概率論 (具體應用入有關學科) i:概率論其他學科
十八、數理統計學
a:抽樣理論 (包括抽樣分布、抽樣調查等 )b:假設檢驗 c:非參數統計 d:方差分析 e:相關回歸分析 f:統計推斷 g:貝葉斯統計 (包括參數估計等) h:試驗設計 i:多元分析 j:統計判決理論 k:時間序列分析 l:數理統計學其他學科
十九、應用統計數學
a:統計質量控制 b:可靠性數學 c:保險數學 d:統計模擬
二十、應用統計數學其他學科
二十一、運籌學
a:線性規劃 b:非線性規劃 c:動態規劃 d:組合最優化 e:參數規劃 f:整數規劃 g:隨機規劃 h:排隊論 i:對策論 亦稱博弈論 j:庫存論 k:決策論 l:搜索論 m:圖論 n:統籌論 o:最優化 p:運籌學其他學科
二十二、組合數學
二十三、模糊數學
二十四、量子數學
二十五、應用數學 (具體應用入有關學科)
二十六、數學其他學科
參考資料:-數學
以上就是介紹數學的全部內容,數學是處理形狀、數量和排列邏輯的科學。數學就在我們身邊,在我們所做的一切中。它是我們日常生活中一切事物的基石,包括移動設備、計算機、、建筑(古代和現代)、藝術、貨幣、工程甚至體育。自從有歷史記錄以來。