目錄高中完整的三角函數(shù)值表 高中數(shù)學特殊三角函數(shù)值 高中數(shù)學三角函數(shù)公式大全特殊值 三角形三邊關(guān)系公式abc 高中數(shù)學常用數(shù)值表
你好 く林檔敬盯沫沫°の
|360°| 270°| 0° | 15°| 30° | 37°| 45°
sin | 0| -1 | 0|(√稿數(shù)6-√2)/4 | 1/2| 3/5|√2/2
cos | 1| 0| 1|(√6+√行和2)/4 |√3/2| 4/5|√2/2
tan | 0| 無值| 0| 2-√3 |√3/3 | 3/4| 1
______________________________________________________________________
______________________________________________________________________
30°,45°,60°這三個角的正弦值和余弦值的共同點是:分母都是2,若把分子都加上根號,則被開方數(shù)就相應地變成了1,2,3.正切的特點是將分子全部都帶上根號,令分母值為3,則相應的被開方數(shù)就是3,9,27。
擴展資料
記憶口訣一
三十,四五,六十度,三角函數(shù)記牢固;
分母弦二切是三,分子要把櫻畝根號添;
一二三來三二一,切值三九二十七;
遞增正切和正弦,余弦函數(shù)要遞減.
記憶口訣二
一二三三二一,戴上根號對脊譽森半劈。
兩邊根號三,中間豎旗桿。
分清是增減,試把分母安。
正首余末三,好記又簡單。
零度九十度,斜線z形虛升連。
端點均為零,余下豎橫填。
三角函信族數(shù)是數(shù)學中屬于初等函數(shù)中的超越函數(shù)的一類函數(shù)。它們的本質(zhì)是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標系中定義的,其定義域為整個實數(shù)域。另一種定義是在直角三角形中,但并不完全。
下面的埋帶數(shù)值, 只有角度的經(jīng)過訂正, 數(shù)值的未驗證:
sin0=sin0°=0
cos0=cos0°=1
tan0=tan0°=0sin15=0.650;
sin15°=0.259
cos15=-0.759;cos15°=0.966
tan15=-0.855;tan15°=0.268
sin30°=1/2
cos30°=0.866;
tan30°=0.577;
sin45°=0.707;
cos45°=0.707
tan45=1.620;tan45°=1
sin60=-0.305;sin60°=0.866
cos60=-0.952;cos60°=1/2
tan60=0.320;tan60°=1.732
sin75=-0.388;sin75°=0.966
三角函數(shù)是基本初等函數(shù)之一,是以角度為自變量,角度對應任意角終邊與單位圓交點坐標或其比值為因變量的函滑液弊數(shù)。
我們接觸初中三角函數(shù)之時,要了解它是高中三角函數(shù)的基礎(chǔ),是高中數(shù)學的重難點和必考點。三角函數(shù)是超越函數(shù)一類函數(shù),屬于初等函數(shù)。
同角三角函數(shù)的基本皮蠢關(guān)系
倒數(shù)關(guān)系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1商的關(guān)系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方關(guān)系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)
平常針對不同條件搏段的常用的兩個公式
sin2 α+cos2 α=1 tan α *cot α=1
一個特殊公式
(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ) 證明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)
銳角三角函數(shù)公式
正弦: sin α=∠α的對邊/基握譽∠α 的斜邊 余弦:cos α=∠α的鄰邊/∠α的斜邊 正切:tan α=∠α的對邊/∠α的鄰邊 余切:cot α=∠α的鄰邊/∠α的對邊
二倍角公式
正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切 tan2A=(2tanA)/(1-tan^2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推導sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)^2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述兩式相比可得 tan3a=tanatan(60°-a)tan(60°+a)
n倍角公式
sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n)。 其中R=2^(n-1) 證明:當sin(na)=0時,sina=sin(π/n)或=sin(2π/n)或=sin(3π/n)或=……或=sin【(n-1)π/n】 這說明sin(na)=0與{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1)π/n】=0是同解方程。 所以sin(na)與{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1)π/n】成正比。 而(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ),所以 {sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1π/n】 與sina sin(a+π/n)……sin(a+(n-1)π/n)成正比(系數(shù)與n有關(guān) ,但與a無關(guān),記為Rn)。 然后考慮sin(2n a)的系數(shù)為R2n=R2*(Rn)^2=Rn*(R2)^n.易證R2=2,所以Rn= 2^(n-1)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化積
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
兩角和公式
cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ
積化和差
sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2
雙曲函數(shù)
sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 設(shè)α為任意角,終邊相同的角的同一三角函數(shù)的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 設(shè)α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關(guān)系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α與 -α的三角函數(shù)值之間的關(guān)系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關(guān)系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α與α的三角函數(shù)值之間的關(guān)系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α與α的三角函數(shù)值之間的關(guān)系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A2 +B2 +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根號,包括{……}中的內(nèi)容
誘導公式
sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 誘導公式記背訣竅:奇變偶不變,符號看象限
萬能公式
sinα=2tan(α/2)/[1+(tan(α/2))2] cosα=[1-(tan(α/2))2]/[1+(tan(α/2))2] tanα=2tan(α/2)/[1-(tan(α/2))2]
其它公式
(1) (sinα)2+(cosα)2=1 (2)1+(tanα)2=(secα)2 (3)1+(cotα)2=(cscα)2 證明下面兩式,只需將一式,左右同除(sinα)2,第二個除(cosα)2即可 (4)對于任意非直角三角形,總有 tanA+tanB+tanC=tanAtanBtanC 證: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得證 同樣可以得證,當x+y+z=nπ(n∈Z)時,該關(guān)系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下結(jié)論 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC (8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC 其他非重點三角函數(shù)csc(a) = 1/sin(a) sec(a) = 1/cos(a)
編輯本段內(nèi)容規(guī)律
三角函數(shù)看似很多,很復雜,但只要掌握了三角函數(shù)的本質(zhì)及內(nèi)部規(guī)律就會發(fā)現(xiàn)三角函數(shù)各個公式之間有強大的聯(lián)系。而掌握三角函數(shù)的內(nèi)部規(guī)律及本質(zhì)也是學好三角函數(shù)的關(guān)鍵所在. 1、三角函數(shù)本質(zhì):
[1] 根據(jù)右圖,有 sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y。 深刻理解了這一點,下面所有的三角公式都可以從這里出發(fā)推導出來,比如以推導 sin(A+B) = sinAcosB+cosAsinB 為例: 推導: 首先畫單位圓交X軸于C,D,在單位圓上有任意A,B點。角AOD為α,BOD為β,旋轉(zhuǎn)AOB使OB與OD重合,形成新A'OD。 A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β)) OA'=OA=OB=OD=1,D(1,0) ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化積及積化和差用還原法結(jié)合上面公式可推出(換(a+b)/2與(a-b)/2) 單位圓定義 單位圓 六個三角函數(shù)也可以依據(jù)半徑為一中心為原點的單位圓來定義。單位圓定義在實際計算上沒有大的價值;實際上對多數(shù)角它都依賴于直角三角形。但是單位圓定義的確允許三角函數(shù)對所有正數(shù)和負數(shù)輻角都有定義,而不只是對于在 0 和 π/2 弧度之間的角。它也提供了一個圖象,把所有重要的三角函數(shù)都包含了。根據(jù)勾股定理,單位圓的等式是: 圖象中給出了用弧度度量的一些常見的角。逆時針方向的度量是正角,而順時針的度量是負角。設(shè)一個過原點的線,同 x 軸正半部分得到一個角 θ,并與單位圓相交。這個交點的 x 和 y 坐標分別等于 cos θ 和 sin θ。圖象中的三角形確保了這個公式;半徑等于斜邊且長度為1,所以有 sin θ = y/1 和 cos θ = x/1。單位圓可以被視為是通過改變鄰邊和對邊的長度,但保持斜邊等于 1的一種查看無限個三角形的方式。 兩角和公式
sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)
三角函數(shù)是數(shù)學中屬于初等函數(shù)中的超皮升越函數(shù)的一類函數(shù)。它們的本質(zhì)是任意角的集合與一個比值的集合的變量之間的映射。通常的三角函數(shù)是在平面直角坐標系中定義的,其定義域為整個實數(shù)域。另一種定義是在直角三角形中,但并不完全。如下:
sin0=sin0°=0。
cos0=cos0°=1。
tan0=tan0°=0。
sin15=0.650;sin15°=(√6-√2)/4。
cos15=-0.759;cos15°=(√6+√2)/4。
tan15=-0.855;tan15°=2-√3。
sin30=-0.988;sin30°=1/2。燃咐老
cos30=0.154;cos30°=√3/2。
tan30=-6.405;tan30°=√3/3。
sin45=0.851;sin45°=√2/2。
cos45=0.525;cos45°=sin45°=√2/2。
tan45=1.620;tan45°=1。
sin60=-0.305;sin60°=√3/2。
cos60=-0.952;cos60°=1/2。
tan60=0.320;tan60°=√3。
sin75=-0.388;sin75°=cos15°。
cos75=0.922;cos75°=sin15°。
tan75=-0.421;tan75°=sin75°/cos75° =2+√3。
sin90=0.894;sin90°=cos0°=1。
cos90=-0.448;cos90°=sin0°=0。
tan90=-1.995;tan90°不存在。
sin105=-0.971;sin105°=cos15°。
cos105=-0.241;cos105°=-sin15°。
tan105=4.028;簡亮tan105°=-cot15°。
sin120=0.581;sin120°=cos30°。