目錄中國數學發展史 概括 數學發展史時間軸 高中數學趣味活動方案 高中趣味數學題50道 我國古代數學偉大成就
十六世紀末開始,西方傳教士開始到中國活動,由于明清王朝制定天文歷法的需要,傳教士開始將與天文歷算有關的西方初等數學知識傳入中國,中國數學家在“西學中源”思想支配下,數學研究出現了一個中西融合貫通的局面。
十六世紀末,西方傳教士和中國學者合譯了許多西方數學專著。其中第一部且有重大影響的是意大利傳教士利馬竇和徐光啟合譯的《幾何原本》前6卷〔1607〕,其嚴謹的邏輯體系和演譯方法深受徐光啟推崇。徐光啟本人撰寫的《測量異同》和《勾股義》便應用了《幾何原本》的邏輯推理方法論證中國的勾股測望術。此外,《幾何原本》課本中絕大部份的名詞都是首創,且沿用至今。在輸入的西方數學中僅次于幾何的是三角學。在此鎮銀之前,三角學只有零星的知識,而此后獲得迅速發展。介紹西方三角學的著作有鄧玉函編譯的《大測》〔2卷,1631〕、《割圓八線表》〔6卷〕和羅雅谷的《測量全義》〔10卷,1631〕。在徐光啟主持編譯的《崇禎歷書》〔137卷,1629-1633〕中,介紹了有關圓錐曲線的數學知識。
入清以后,會通中西數學的杰出代表是梅文鼎,他堅信中國傳統數學“必有精理”,對古代名著做了深入的研究,同時又能正確對待西方數學,使之在中國扎根,對清代中期數學研究的高潮是有積極影響的。與他同時代的數學家還有王錫闡和年希堯等人。清康熙帝愛好科學研究,他“御定”的《數理精蘊》〔53卷,1723〕,是一部比較全面的初等數學書,對當時的數學研究有一定影響。
1840年鴉片戰爭后,閉關鎖國政策被迫中止。同文館內添設“算學”,上海江南制造局內添設翻譯館,由此開始第二次翻譯引進的高潮。主要譯者和著作有:李善蘭與英國傳教士偉烈亞力合譯的《幾何原本》后9卷〔1857〕,使中國有了完整的《幾何原本》中譯本;《代數學》13卷〔1859〕;《代微積拾級》18卷〔1859〕。李善蘭與英國傳教士艾約瑟合譯《圓錐曲線說》3卷,華蘅芳與英國傳教士傅蘭雅合譯《代數術》25卷〔1872〕,《微積溯源》8卷〔1874〕,《決疑數學》10卷〔1880〕等。在這些譯著中,創造了許多數學名詞和術語,至今仍在應用。1898年建立京師大學堂,同文館并入。1905年廢除科舉,建立西方式學校教育,使用的課本也與西方其它各國相仿。這一時期是從20世紀初至今的一段時間,常以1949年新中國成立為標志劃分為兩個階段。
中國近現代數學開始于清末民初的留學活動。較早出國學習數學的有1903年留日的馮祖荀,1908年留美的鄭之蕃,1910年留美的胡明復和趙元任,1911年留美的姜立夫,1912年留法的何魯,1913年留日的陳建功和留比利時的熊慶來〔1915年轉留法〕,1919年留日的蘇步青等人。他們中的多數回國后成為著名數學家和數學教育家,為中國近現代數學發展做出重要貢獻。其中胡明復1917年取得美國哈佛大學博士學位,成為第一位獲得博士學位的中國數學家。隨著留學人員的回國,各地大學的數學教育有了起色。最初只有北京大學1912年成立時建立的數學系,1920年姜立夫在天津南開大學創建數學系,1921年和1926年熊慶來分別在東南大學〔今南京大學〕和清華大學建立數學系,不久武漢大學、齊魯大學、浙江大學、中山大學陸續設立了數學系,到1932年各地已有32所大學設立了數學系或數理系。1930年熊慶來在清華大學首創數學研究部,開始招收研究生,陳省身、吳大任成為國內最早的數學研究生。三十年代出國學習數學的還有江澤涵〔1927〕、陳省身〔1934〕、華羅庚〔1936〕、許寶騤〔1936〕等人,他們都成為中國現代數學發展的骨干力量。同時外國數學家也有來華講學的,例如英國的羅素〔1920〕,美國的伯克霍夫〔1934〕、奧斯古德〔1934〕、維鋒襲納〔1935〕,法國的阿達馬〔1936〕等人。1935年中國數學會成立大會在上海召開,共有33名代表出席。1936年〈中國數學會學報〉和《數學雜志》相繼問世,這些標志著中國現代數學研究的進一步發展。解放以前的數學研究集中在純數學領域,在國內外共發表論著600余種。在分析學方面,陳建功的三角級數論,熊慶來的亞純函數與整函數論研究是代表作,另外還有泛函分銀旅兄析、變分法、微分方程與積分方程的成果;在數論與代數方面,華羅庚等人的解析數論、幾何數論和代數數論以及近世代數研究取得令世人矚目的成果;在幾何與拓撲學方面,蘇步青的微分幾何學,江澤涵的代數拓撲學,陳省身的纖維叢理論和示性類理論等研究做了開創性的工作:在概率論與數理統計方面,許寶騤在一元和多元分析方面得到許多基本定理及嚴密證明。此外,李儼和錢寶琮開創了中國數學史的研究,他們在古算史料的注釋整理和考證分析方面做了許多奠基性的工作,使中國的民族文化遺產重放光彩。
1949年11月即成立中國科學院。1951年3月《中國數學學報》復刊〔1952年改為《數學學報》〕,1951年10月《中國數學雜志》復刊〔1953年改為《數學通報》〕。1951年8月中國數學會召開建國后第一次國代表大會,討論了數學發展方向和各類學校數學教學改革問題。
建國后的數學研究取得長足進步。50年代初期就出版了華羅庚的《堆棧素數論》〔1953〕、蘇步青的《射影曲線概論》〔1954〕、陳建功的《直角函數級數的和》〔1954〕和李儼的《中算史論叢》5集〔1954-1955〕等專著,到1966年,共發表各種數學論文約2萬余篇。除了在數論、代數、幾何、拓撲、函數論、概率論與數理統計、數學史等學科繼續取得新成果外,還在微分方程、計算技術、運籌學、數理邏輯與數學基礎等分支有所突破,有許多論著達到世界先進水平,同時培養和成長起一大批優秀數學家。
60年代后期,中國的數學研究基本停止,教育癱瘓、人員喪失、對外交流中斷,后經多方努力狀況略有改變。1970年《數學學報》恢復出版,并創刊《數學的實踐與認識》。1973年陳景潤在《中國科學》上發表《大偶數表示為一個素數及一個不超過二個素數的乘積之和》的論文,在哥德巴赫猜想的研究中取得突出成就。此外中國數學家在函數論、馬爾可夫過程、概率應用、運籌學、優選法等方面也有一定創見。
1978年11月中國數學會召開第三次代表大會,標志著中國數學的復蘇。1978年恢復全國數學競賽,1985年中國開始參加國際數學奧林匹克數學競賽。1981年陳景潤等數學家獲國家自然科學獎勵。1983年國家首批授于18名中青年學者以博士學位,其中數學工作者占2/3。1986年中國第一次派代表參加國際數學家大會,加入國際數學聯合會,吳文俊應邀作了關于中國古代數學史的45分鐘演講。近十幾年來數學研究碩果累累,發表論文專著的數量成倍增長,質量不斷上升。1985年慶祝中國數學會成立50周年年會上,已確定中國數學發展的長遠目標。代表們立志要不懈地努力,爭取使中國在世界上早日成為新的數學大國。
⑴以算法為中心,屬于應用數學。中國數學不脫離社會生活與生產的實際,以解決實際問題為目標,數學研究是圍繞建立算法與提高計算技術而展開的。
⑵具有較強的社會性。中國傳統數學文化中,數學被儒學家培養人的道德與技能的基本知識---六藝(禮、樂、射、御、書、數)之一,它的作用在于“通神明、順性命,經世務、類萬物”,所以中國傳統數學總是被打上中國哲學與古代學術思想的烙印,往往與術數交織在一起。同時,數學教育與研究往往被封建政府所控制,唐宋時代的數學教育與科舉制度、歷代數學家往往是政府的天文官員,這些事例充分反映了這一性質。
⑶寓理山宏于算,理論高度概括。由于中國傳統數學注重解決實際問題,而且因中國人綜合、歸納思維的決定,所以中國傳統數學不關心數學理論的形式化,但這并不意味中國傳統僅停留在經驗層次而無理論建樹。其實中國數學的算法中蘊涵著建立這些算法的理論基礎,中國數學家習慣把數學概念與方法建立在少數幾個不證自明、形象直觀的數學原理之上,如代數中的“率”的理論,平面幾何中的“出入相補”原理,立體幾何中的“陽馬術”、曲面體理論搜州中的“截面原理”(或稱劉祖原理,即卡瓦列利原理)等等。
10、中國數學對世界的影響
數學活動有兩項基本工作----證明與計算,前者是由于接受了公理化(演繹化)數學文化傳統,后者是由于接受了機械化(算法化)數學文化傳統。在世界數學文化傳統中,以歐幾里得《幾何原本》為代表的希臘數學,無疑是西方演繹數學傳統的基礎,而以《九章算術》為代表的中國數學無疑是東方算法化逗漏冊數學傳統的基礎,它們東西輝映,共同促進了世界數學文化的發展。
中國數學通過絲綢之路傳播到印度、阿拉伯地區,后來經阿拉伯人傳入西方。而且在漢字文化圈內,一直影響著日本、朝鮮半島、越南等亞洲國家的數學發展。
中國古代數學輝煌史
中國古代數學的萌芽
原始公社末期,私有制和貨物交換產生以后,數與形的概念有了進一步的發展,仰韶文化時期出土的
陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字符號取代結繩記事了。
西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形的圖案,半坡遺址
的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、準、繩等作圖與測量
。據《史記·夏本紀》記載,夏禹治水時已使用了這些。
商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用
十個天干和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰
、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。
公元前一世紀的《周髀算經祥蠢》提到西周初期用矩測量高、深、廣、遠的方法,并舉出勾股形的勾三、
股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記
數方法,他們要受禮、樂、射、馭、書、數的訓練,作為“六藝”之一的數已經開始成為專門的課程。
春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發
展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。
戰國時期的百家爭鳴也促進了數學的發展,尤其是對于正名和一些命題的爭論直接與數學有關。名家
認為經過抽象以后的名詞概念與它們原來的實體不同,他們提出“矩不方,規不可以為圓”,把“大一”(
無窮大)定義為“至大無外”,“小一”(無窮小)定義為“至小無內”。還提出了“一尺之棰,日取其半,
萬世不竭”等命題。
而墨家則跡茄認為名來源于物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、
方、平、直、次(相切)、端(點)等等。
墨家不同意“一尺之棰”的命題,提出一個“非半”的命題來進行反駁:將一線段按一半一半地無限
分割下去,就必將出現一個不能再分割的“非半”,這個“非半”就是點。
名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果
。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。
中國古代數學體系的形成
秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成于這個時期,
它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。
《九章算術》是戰國、秦、漢封建社會創立并鞏固時期數學發展的總結,就其數學成就來說,堪稱是
世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、
盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(
特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發
展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。
《九章算術》有幾個顯著的特點:采用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來
的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。
這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固
封建制度,以及發展社會生產服務,強調數學的應用性。最后成書于東漢初年的《九章算術》,排除了戰
國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重于與當時生產、生活密切相結合
的數學問題及其解法,這與當時社會的發展情況是完全一致的。
《九章算術》在隋唐時期曾傳到朝鮮、日本,并成為這些國家當時的數學教科書。它的一些謹州陪成就如十
進位值制、今有術、盈不足術等還傳到印度和阿拉伯,并通過印度、阿拉伯傳到歐洲,促進了世界數學的
發展。
中國古代數學的發展
魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析
義理,這些都有利于數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注
,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代
數學體系奠定了理論基礎。
趙爽是中國古代對數學定理和公式進行證明與推導的最早的數學家之一。他在《周髀算經》書中補充
的“勾股圓方圖及注”和“日高圖及注”是十分重要的數學文獻。在“勾股圓方圖及注”中他提出用弦圖
證明勾股定理和解勾股形的五個公式;在“日高圖及注”中,他用圖形面積證明漢代普遍應用的重差公式
,趙爽的工作是帶有開創性的,在中國古代數學發展中占有重要地位。
劉徽約與趙爽同時,他繼承和發展了戰國時期名家和墨家的思想,主張對一些數學名詞特別是重要的
數學概念給以嚴格的定義,認為對數學知識必須進行“析理”,才能使數學著作簡明嚴密,利于讀者。他
的《九章算術》注不僅是對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且在論述的過程
中有很大的發展。劉徽創造割圓術,利用極限的思想證明圓的面積公式,并首次用理論的方法算得圓周率
為 157/50和 3927/1250。
劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恒為2:1,解決了一般立體體積的關鍵問
題。在證明方錐、圓柱、圓錐、圓臺的體積時,劉徽為徹底解決球的體積提出了正確途徑。
東晉以后,中國長期處于戰爭和南北分裂的狀態。祖沖之父子的工作就是經濟文化南移以后,南方數
學發展的具有代表性的工作,他們在劉徽注《九章算術》的基礎上,把傳統數學大大向前推進了一步。他
們的數學工作主要有:計算出圓周率在3.1415926~3.1415927之間;提出祖(日恒)原理;提出二次與三次
方程的解法等。
據推測,祖沖之在劉徽割圓術的基礎上,算出圓內接正6144邊形和正12288邊形的面積,從而得到了這
個結果。他又用新的方法得到圓周率兩個分數值,即約率22/7和密率355/113。祖沖之這一工作,使中國在
圓周率計算方面,比西方領先約一千年之久;
祖沖之之子祖(日恒)總結了劉徽的有關工作,提出“冪勢既同則積不容異”,即等高的兩立體,若其
任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖(日恒)公理。祖(日恒)應用這個公理
,解決了劉徽尚未解決的球體積公式。
隋煬帝好大喜功,大興土木,客觀上促進了數學的發展。唐初王孝通的《緝古算經》,主要討論土木
工程中計算土方、工程分工、驗收以及倉庫和地窖的計算問題,反映了這個時期數學的情況。王孝通在不
用數學符號的情況下,立出數字三次方程,不僅解決了當時社會的需要,也為后來天元術的建立打下基礎
。此外,對傳統的勾股形解法,王孝通也是用數字三次方程解決的。
唐初封建統治者繼承隋制,656年在國子監設立算學館,設有算學博士和助教,學生30人。由太史令李
淳風等編纂注釋《算經十書》,作為算學館學生用的課本,明算科考試亦以這些算書為準。李淳風等編纂
的《算經十書》,對保存數學經典著作、為數學研究提供文獻資料方面是很有意義的。他們給《周髀算經
》、《九章算術》以及《海島算經》所作的注解,對讀者是有幫助的。隋唐時期,由于歷法的需要,天算
學家創立了二次函數的內插法,豐富了中國古代數學的內容。
算籌是中國古代的主要計算,它具有簡單、形象、具體等優點,但也存在布籌占用面積大,運籌
速度加快時容易擺弄不正而造成錯誤等缺點,因此很早就開始進行改革。其中太乙算、兩儀算、三才算和
珠算都是用珠的槽算盤,在技術上是重要的改革。尤其是“珠算”,它繼承了籌算五升十進與位值制的優
點,又克服了籌算縱橫記數與置籌不便的缺點,優越性十分明顯。但由于當時乘除算法仍然不能在一個橫
列中進行。算珠還沒有穿檔,攜帶不方便,因此仍沒有普遍應用。
唐中期以后,商業繁榮,數字計算增多,迫切要求改革計算方法,從《新唐書》等文獻留下來的算書
書目,可以看出這次算法改革主要是簡化乘、除算法,唐代的算法改革使乘除法可以在一個橫列中進行運
算,它既適用于籌算,也適用于珠算。
中國古代數學的繁榮
960年,北宋王朝的建立結束了五代十國割據的局面。北宋的農業、手工業、商業空前繁榮,科學技術
突飛猛進,火藥、指南針、印刷術三大發明就是在這種經濟高漲的情況下得到廣泛應用。1084年秘書省第
一次印刷出版了《算經十書》,1213年鮑搟之又進行翻刻。這些都為數學發展創造了良好的條件。
從11~14世紀約300年期間,出現了一批著名的數學家和數學著作,如賈憲的《黃帝九章算法細草》,
劉益的《議古根源》,秦九韶的《數書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章
算法》《日用算法》和《楊輝算法》,朱世杰的《算學啟蒙》《四元玉鑒》等,很多領域都達到古代數學
的高峰,其中一些成就也是當時世界數學的高峰。
從開平方、開立方到四次以上的開方,在認識上是一個飛躍,實現這個飛躍的就是賈憲。楊輝在《九
章算法纂類》中載有賈憲“增乘開平方法”、“增乘開立方法”;在《詳解九章算法》中載有賈憲的“開
方作法本源”圖、“增乘方法求廉草”和用增乘開方法開四次方的例子。根據這些記錄可以確定賈憲已發
現二項系數表,創造了增乘開方法。這兩項成就對整個宋元數學發生重大的影響,其中賈憲三角比西方的
帕斯卡三角形早提出600多年。
把增乘開方法推廣到數字高次方程(包括系數為負的情形)解法的是劉益。《楊輝算法》中“田畝比類
乘除捷法”卷,介紹了原書中22個二次方程和 1個四次方程,后者是用增乘開方法解三次以上的高次方程
的最早例子。
秦九韶是高次方程解法的集大成者,他在《數書九章》中收集了21個用增乘開方法解高次方程(最高次
數為10)的問題。為了適應增乘開方法的計算程序,奏九韶把常數項規定為負數,把高次方程解法分成各種
類型。當方程的根為非整數時,秦九韶采取繼續求根的小數,或用減根變換方程各次冪的系數之和為分母
,常數為分子來表示根的非整數部分,這是《九章算術》和劉徽注處理無理數方法的發展。在求根的第二
位數時,秦九韶還提出以一次項系數除常數項為根的第二位數的試除法,這比西方最早的霍納方法早500多
年。
元代天文學家王恂、郭守敬等在《授時歷》中解決了三次函數的內插值問題。秦九韶在“綴術推星”
題、朱世杰在《四元玉鑒》“如象招數”題都提到內插法(他們稱為招差術),朱世杰得到一個四次函數的
內插公式。
用天元(相當于x)作為未知數符號,立出高次方程,古代稱為天元術,這是中國數學史上首次引入符號
,并用符號運算來解決建立高次方程的問題。現存最早的天元術著作是李冶的《測圓海鏡》。
從天元術推廣到二元、三元和四元的高次聯立方程組,是宋元數學家的又一項杰出的創造。留傳至今
,并對這一杰出創造進行論述的是朱世杰的《四元玉鑒》。
朱世杰的四元高次聯立方程組表示法是在天元術的基礎上發展起來的,他把常數放在中央,四元的各
次冪放在上、下、左、右四個方向上,其他各項放在四個象限中。朱世杰的最大貢獻是提出四元消元法,
其方法是先擇一元為未知數,其他元組成的多項式作為這未知數的系數,列成若干個一元高次方程式,然
后應用互乘相消法逐步消去這一未知數。重復這一步驟便可消去其他未知數,最后用增乘開方法求解。這
是線性方法組解法的重大發展,比西方同類方法早400多年。
勾股形解法在宋元時期有新的發展,朱世杰在《算學啟蒙》卷下提出已知勾弦和、股弦和求解勾股形
的方法,補充了《九章算術》的不足。李冶在《測圓海鏡》對勾股容圓問題進行了詳細的研究,得到九個
容圓公式,大大豐富了中國古代幾何學的內容。
已知黃道與赤道的夾角和太陽從冬至點向春分點運行的黃經余弧,求赤經余弧和赤緯度數,是一個解
球面直角三角形的問題,傳統歷法都是用內插法進行計算。元代王恂、郭守敬等則用傳統的勾股形解法、
沈括用會圓術和天元術解決了這個問題。不過他們得到的是一個近似公式,結果不夠精確。但他們的整個
推算步驟是正確無誤的,從數學意義上講,這個方法開辟了通往球面三角法的途徑。
中國古代計算技術改革的高潮也是出現在宋元時期。宋元明的歷史文獻中載有大量這個時期的實用算
術書目,其數量遠比唐代為多,改革的主要內容仍是乘除法。與算法改革的同時,穿珠算盤在北宋可能已
出現。但如果把現代珠算看成是既有穿珠算盤,又有一套完善的算法和口訣,那么應該說它最后完成于元
代。
宋元數學的繁榮,是社會經濟發展和科學技術發展的必然結果,是傳統數學發展的必然結果。此外,
數學家們的科學思想與數學思想也是十分重要的。宋元數學家都在不同程度上反對理學家的象數神秘主義
。秦九韶雖曾主張數學與道學同出一源,但他后來認識到,“通神明”的數學是不存在的,只有“經世務
類萬物”的數學;莫若在《四元玉鑒》序文中提出的“用假象真,以虛問實”則代表了高度抽象思維的思
想方法;楊輝對縱橫圖結構進行研究,揭示出洛書的本質,有力地批判了象數神秘主義。所有這些,無疑
是促進數學發展的重要因素。
中西方數學的融合
中國從明代開始進入了封建社會的晚期,封建統治者實行極權統治,宣傳唯心主義哲學,施行八股考
試制度。在這種情況下,除珠算外,數學發展逐漸衰落。
16世紀末以后,西方初等數學陸續傳入中國,使中國數學研究出現一個中西融合貫通的局面;鴉片戰
爭以后,近代數學開始傳入中國,中國數學便轉入一個以學習西方數學為主的時期;到19世紀末20世紀初
,近代數學研究才真正開始。
從明初到明中葉,商品經濟有所發展,和這種商業發展相適應的是珠算的普及。明初《魁本對相四言
雜字》和《魯班木經》的出現,說明珠算已十分流行。前者是兒童看圖識字的課本,后者把算盤作為家庭
必需用品列入一般的木器家具手冊中。
隨著珠算的普及,珠算算法和口訣也逐漸趨于完善。例如王文素和程大位增加并改善撞歸、起一口訣
;徐心魯和程大位增添加、減口訣并在除法中廣泛應用歸除,從而實現了珠算四則運算的全部口訣化;朱
載墑和程大位把籌算開平方和開立方的方法應用到珠算,程大位用珠算解數字二次、三次方程等等。程大
位的著作在國內外流傳很廣,影響很大。
1582年,意大利傳教士利瑪竇到中國,1607年以后,他先后與徐光啟翻譯了《幾何原本》前六卷、《
測量法義》一卷,與李之藻編譯《圜容較義》和《同文算指》。1629年,徐光啟被禮部任命督修歷法,在
他主持下,編譯《崇禎歷書》137卷。《崇禎歷書》主要是介紹歐洲天文學家第谷的地心學說。作為這一學
說的數學基礎,希臘的幾何學,歐洲玉山若干的三角學,以及納皮爾算籌、伽利略比例規等計算也同
時介紹進來。
在傳入的數學中,影響最大的是《幾何原本》。《幾何原本》是中國第一部數學翻譯著作,絕大部分
數學名詞都是首創,其中許多至今仍在沿用。徐光啟認為對它“不必疑”、“不必改”,“舉世無一人不
當學”。《幾何原本》是明清兩代數學家必讀的數學書,對他們的研究工作頗有影響。
其次應用最廣的是三角學,介紹西方三角學的著作有《大測》《割圓八線表》和《測量全義》。《大
測》主要說明三角八線(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性質,造表方法和用表方
法。《測量全義》除增加一些《大測》所缺的平面三角外,比較重要的是積化和差公式和球面三角。所有
這些,在當時歷法工作中都是隨譯隨用的。
1646年,波蘭傳教士穆尼閣來華,跟隨他學習西方科學的有薛鳳柞、方中通等。穆尼閣去世后,薛鳳
柞據其所學,編成《歷學會通》,想把中法西法融會貫通起來。《歷學會通》中的數學內容主要有比例對
數表》《比例四線新表》和《三角算法》。前兩書是介紹英國數學家納皮爾和布里格斯發明增修的對數。
后一書除《崇禎歷書》介紹的球面三角外,尚有半角公式、半弧公式、德氏比例式、納氏比例式等。方中
通所著《數度衍》對對數理論進行解釋。對數的傳入是十分重要,它在歷法計算中立即就得到應用。
清初學者研究中西數學有心得而著書傳世的很多,影響較大的有王錫闡《圖解》、梅文鼎《梅氏叢書
輯要》(其中數學著作13種共40卷)、年希堯《視學》等。梅文鼎是集中西數學之大成者。他對傳統數學中
的線性方程組解法、勾股形解法和高次冪求正根方法等方面進行整理和研究,使瀕于枯萎的明代數學出現
了生機。年希堯的《視學》是中國第一部介紹西方****學的著作。
清康熙皇帝十分重視西方科學,他除了親自學習天文數學外,還培養了一些人才和翻譯了一些著作。
1712年康熙皇帝命梅彀成任蒙養齋匯編官,會同陳厚耀、何國宗、明安圖、楊道聲等編纂天文算法書。
1721年完成《律歷淵源》100卷,以康熙“御定”的名義于1723年出版。其中《數理精蘊》主要由梅彀成負
責,分上下兩編,上編包括《幾何原本》、《算法原本》,均譯自法文著作;下編包括算術、代數、平面
幾何平面三角、立體幾何等初等數學,附有素數表、對數表和三角函數表。由于它是一部比較全面的初等
數學百科全書,并有康熙“御定”的名義,因此對當時數學研究有一定影響。
綜上述可以看到,清代數學家對西方數學做了大量的會通工作,并取得許多獨創性的成果。這些成果
,如和傳統數學比較,是有進步的,但和同時代的西方比較則明顯落后了。
雍正即位以后,對外閉關自守,導致西方科學停止輸入中國,對內實行高壓政策,致使一般學者既不
能接觸西方數學,又不敢過問經世致用之學,因而埋頭于究治古籍。乾嘉年間逐漸形成一個以考據學為主
的乾嘉學派。
隨著《算經十書》與宋元數學著作的收集與注釋,出現了一個研究傳統數學的高潮。其中能突破舊有
框框并有發明創造的有焦循、汪萊、李銳、李善蘭等。他們的工作,和宋元時代的代數學比較是青出于藍
而勝于藍的;和西方代數學比較,在時間上晚了一些,但這些成果是在沒有受到西方近代數學的影響下獨
立得到的。
與傳統數學研究出現高潮的同時,阮元與李銳等編寫了一部天文數學家傳記—《疇人傳》,收集了從
黃帝時期到嘉慶四年已故的天文學家和數學家270余人(其中有數學著作傳世的不足50人),和明末以來介紹
西方天文數學的傳教士41人。這部著作全由“掇拾史書,荃萃群籍,甄而錄之”而成,收集的完全是第一
手的原始資料,在學術界頗有影響。
1840年鴉片戰爭以后,西方近代數學開始傳入中國。首先是英人在上海設立墨海書館,介紹西方數學
。第二次鴉片戰爭后,曾國藩、李鴻章等官僚集團開展“洋務運動”,也主張介紹和學習西方數學,組織
翻譯了一批近代數學著作。
其中較重要的有李善蘭與偉烈亞力翻譯的《代數學》《代微積拾級》;華蘅芳與英人傅蘭雅合譯的《
代數術》《微積溯源》《決疑數學》;鄒立文與狄考文編譯的《形學備旨》《代數備旨》《筆算數學》;
謝洪賚與潘慎文合譯的《代形合參》《八線備旨》等等。
《代微積拾級》是中國第一部微積分學譯本;《代數學》是英國數學家德·摩根所著的符號代數學譯
本;《決疑數學》是第一部概率論譯本。在這些譯著中,創造了許多數學名詞和術語,至今還在應用,但
所用數學符號一般已被淘汰了。戊戌變法以后,各地興辦新法學校,上述一些著作便成為主要教科書。
在翻譯西方數學著作的同時,中國學者也進行一些研究,寫出一些著作,較重要的有李善蘭的《《尖
錐變法解》《考數根法》;夏彎翔的《洞方術圖解》《致曲術》《致曲圖解》等等,都是會通中西學術思
想的研究成果。
由于輸入的近代數學需要一個消化吸收的過程,加上清末統治者十分腐敗,在太平天國運動的沖擊下
,在帝國主義列強的掠奪下,焦頭爛額,無暇顧及數學研究。直到1919年五四運動以后,中國近代數學的
研究才真正開始。
春秋時期出現九九乘法口訣,和慎春秋戰國時期又出現籌算計算法,,元代又發展成珠算法,
東漢時期,九章算喚灶敬術辯遲標志著古代數學題系的形成
祖沖之將圓周率精確到小數點后七位,領先世界1000多年
在四大文明古國中,中國數學持續繁榮時期最為長久。在古代著作《世本》中就已提到黃帝使“隸首作算數”,但這只是傳說。
在殷商甲骨文記錄中,中國已經使用完整的十進制記數,春秋戰國時代,又開始出現嚴格的十進位制籌算計數。籌算作為中改襲國古代的計算,是中國古代數學對人類文明的特殊貢獻。
五千多年前的仰韶文化時期的彩陶器上,繪有多種幾何圖形,仰韶文化遺址中還出土了六角和九角形的陶環,說明當時已有一些簡單的幾何知識。
我國是世界上最早使用十進制計數的國家之一。商代甲骨文中已有十進制計數,最大數字為三萬。商和西周時已掌握自然數的簡單運算,已會運用倍數。
從公元前后至公元14世紀,中國古典數學先后經歷了三次發展高潮,即秦漢時期、魏晉南北朝時期和宋元時期,并在宋元時期達到頂峰。
秦漢是中國古代數學體系形成的時期,它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。
成書于東漢初年的《九章算術》,是秦漢封建社會創立并鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。書中已經有分數四則運算、開平方與開立方以及二橋殲枯次方程數值解法、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股定理和求勾股數的方法等,水平都是很高的。其中方程組解法和正負數加減法則在當時的世界數學發展上是遙遙領先的。
秦漢時期的數學多強調實用性,偏重于與當時生產、生活密切相結合的數學問題及其解法。《九章算術》后來傳到了日本、歐洲等國家,對世界數學的發展作出了很大的貢獻。
魏、晉時期出現的玄學到南北朝時非常繁榮,玄學掙脫了漢儒經學的束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利于數學從理論上加以提高。其中吳國趙爽注《周髀算經》,魏末晉初劉徽撰《<九章算術>注》以及《九章重差圖》都是出現在這個時期。他們為中國古代數學體系奠定了理論基礎。
趙爽是中國古代對數學定理和公式進行證明與推導的最早的數學家之一,他在《周髀算經》書中補充的“勾股圓方圖及注”和“日高圖及注”是十分重要的數學文獻。在“勾股圓方圖及注”中他提出用弦圖證明勾股定理和解勾股形的五個公式;在“日高圖及注”中,他用圖形面積證明漢代普遍應用的重差公式,趙爽的工作是具有開創性的,在中國古代數學發展中占有重要地位。劉徽的《<九章算術>注》不僅是對《九章算術》中提到的方法、公式和定理進行了一般的解釋和推導,而且在論述的過程中有很大的發展。劉徽還創造割圓術,利用極限的思想證明圓的面積公式,并首次用理論的方法計算圓周率,他還用無窮分割的方法證明了直角方錐與直角四面體的體積比恒為2:1,解決了一般立體體積的關鍵問題。在證明方錐、圓柱、圓錐、圓臺的體積時,劉徽為徹底解決球的體積提出了正確途徑,但他并沒有給出公式。東晉以后,中國長期處于戰爭和南北分裂的狀態,經濟文化也開始南移,這促進了南方數學的快速發展。這一時期的代表有祖沖之和他的兒子祖暅,祖沖之父子在劉徽《<九章算術>注》的基礎上,把傳統數學大大向前推進了一步。他們計算出圓周率在3.1415926-3.1415927之間,使中國在圓周率計算方面,比西方領先約一千年之久。而他的兒子祖暅則總結了劉徽的有關工作,提出“冪勢既同則積不容異”,即等高的兩立體,若其任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖暅公理。祖暅應用這個公理,解決了劉徽尚未解決的球體積公式。
宋元時期,農業、手工業、商業空前繁榮,科學技術突飛猛進,火藥、指南針、印刷術三大發明就是在這種經濟高漲的情況下得到廣泛應用。一些數學書籍的印刷出版,為數學發展創造了良好的條件。在這期間,出現了一批著名的數學家和數學著作,如賈憲的《黃帝九章算法細草》,劉益的《議古根源》,秦九韶的《數書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章算法》《日用算法》和《楊輝算法》,朱世杰的《算學啟蒙》《四元玉鑒》等,在很多領域都達到古代數學的高峰,其中一些成就也是當時世界數學的高峰。
元代天文學家王恂、郭守敬等在《授時歷》中解決了三次函數的內插值問題。中國古代計算技術改革的高潮也是出現在宋元時期。宋元歷史文獻中載有大量這個時期的實用算術書目,其數量遠比敏洞唐代為多,改革的主要內容仍是乘除法。在算法改革的同時,穿珠算盤在北宋可能已出現。但如果把現代珠算看成是既有穿珠算盤,又有一套完善的算法和口訣,那么應該說它最后完成于元代。
中國從明代開始進入了封建社會的晚期,16世紀末以后,西方初等數學陸續傳入中國,使中國數學研究出現一個中西融合貫通的局面;鴉片戰爭以后,近代數學開始傳入中國,中國數學便轉入一個以學習西方數學為主的時期;到19世紀末20世紀初,近代數學研究才真正開始。一些人開始出國學習數學,較早出國學習數學的有1903年留日的馮祖荀,1908年留美的鄭之蕃,1910年留美的胡明復和趙元任,1911年留美的姜立夫,1912年留法的何魯,1919年留日的蘇步青等人。其中胡明復1917年取得美國哈佛大學博士學位,成為第一位獲得博士學位的中國數學家。他們中的多數回國后成為著名數學家和數學教育家,為中國近現代數學發展作出重要貢獻。
隨著留學人員的回國,各地大學的數學教育也有了起色。最初只有北京大學設有數學系,后來天津南開大學、東南大學(今南京大學)和清華大學等也相繼建立數學系,不久武漢大學、齊魯大學、浙江大學、中山大學也陸續設立了數學系,到1932年各地已有32所大學設立了數學系或數理系。1935年還成立了中國數學會,并且《中國數學會學報》和《數學雜志》相繼問世,這些都標志著中國現代數學研究的進一步發展。