日韩国产欧美区_高清电影一区_国产精品日韩精品在线播放_日韩精品三区四区

當前位置: 首頁 > 學科分類 > 數學

數學必修3,數學選修3

  • 數學
  • 2023-12-06

數學必修3?1.高三年級必修三數學知識點整理 篇一 線線平行常用方法 (1)定義:在同一平面內沒有公共點的兩條直線是平行直線。(2)公理:在空間中平行于同一條直線的兩只直線互相平行。那么,數學必修3?一起來了解一下吧。

數學必修三教材

高一數學必修三共有三章,分別是:

1、第一章算法初步,包括算法與程序框圖、程序框圖、基本算法語句等內容;

2、第二章統計,包括隨機抽樣、用樣本估計總體、變量的相關性等內容;

3、第三章概率,包括事件與概率、古典概型、幾何概型、概率的應用等內容。

高二必修三數學課本

1.高三年級必修三數學知識點

1.定義:

用符號〉,=,〈號連接的式子叫不等式。

2.性質:

①不等式的兩邊都加上或減去同一個整式,不等號方向不變。

②不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

③不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

3.分類:

①一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。

②一元一次不等式組:

a.關于同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

4.考點:

①解一元一次不等式(組)

②根據具體問題中的數量關系列不等式(組)并解決簡單實際問題

③用數軸表示一元一次不等式(組)的解集

2.高三年級必修三數學知識點

定義:

形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。

定義域和值域:

當a為不同的數值時,冪函數的定義域的不同情況如下:

如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。

高中數學必修3電子版

1.高一年級必修三數學知識點

分段函數

(1)在定義域的不同部分上有不同的解析表達式的函數

(2)各部分的自變量的取值情況

(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集

復合函數

如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數

2.高一年級必修三數學知識點

切線的性質

⑴圓心到切線的距離等于圓的半徑;

⑵過切點的半徑垂直于切線;

⑶經過圓心,與切線垂直的直線必經過切點;

⑷經過切點,與切線垂直的直線必經過圓心;

當一條直線滿足

(1)過圓心;

(2)過切點;

(3)垂直于切線三個性質中的兩個時,第三個性質也滿足

切線的判定定理

經過半徑的外端點并且垂直于這條半徑的直線是圓的切線

切線長定理

從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角

3.高一年級必修三數學知識點

兩角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

4.高一年級必修三數學知識點

二項式定理

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特別地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性質和主要結論:對稱性Cnm=Cnn-m,二項式系數在中間。

數學必修3課本電子版

1.高三年級數學必修三知識點整理

空間中的垂直關系

1、直線與平面垂直

定義:直線與平面內任意一條直線都垂直

判定:如果一條直線與一個平面內的兩條相交的直線都垂直,則該直線與此平面垂直

性質:垂直于同一直線的兩平面平行

推論:如果在兩條平行直線中,有一條垂直于一個平面,那么另一條也垂直于這個平面

直線和平面所成的角:【0,90】度,平面內的一條斜線和它在平面內的射影說成的銳角,特別規定垂直90度,在平面內或者平行0度

2、平面與平面垂直

定義:兩個平面所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點為端點,在兩個半平面內分別作垂直于棱的兩條射線所成的角)

判定:一個平面過另一個平面的垂線,則這兩個平面垂直

性質:兩個平面垂直,則一個平面內垂直于交線的直線與另一個平面垂直

2.高三年級數學必修三知識點整理

空間兩條直線只有三種位置關系:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

高中數學必修3課本電子版

1.高三數學必修三知識點歸納

定義:

形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。

定義域和值域:

當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域。

性質:

對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;

排除了為0這種可能,即對于x

排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。

以上就是數學必修3的全部內容,1、直線與平面垂直 定義:直線與平面內任意一條直線都垂直 判定:如果一條直線與一個平面內的兩條相交的直線都垂直,則該直線與此平面垂直 性質:垂直于同一直線的兩平面平行 推論:如果在兩條平行直線中。

猜你喜歡

主站蜘蛛池模板: 淅川县| 禄丰县| 墨江| 贺州市| 通城县| 晋宁县| 扶沟县| 囊谦县| 凤庆县| 弥渡县| 永春县| 固始县| 九江县| 墨江| 武宣县| 肇州县| 车致| 宜阳县| 永济市| 岢岚县| 滦南县| 达拉特旗| 马边| 资溪县| 清原| 阿拉善左旗| 兴安县| 江孜县| 蛟河市| 湘乡市| 廉江市| 揭西县| 迁西县| 津南区| 石屏县| 顺昌县| 阿瓦提县| 乌鲁木齐县| 高阳县| 焉耆| 宁夏|