九年級數學知識點歸納總結?1、提高數學學習能力,有利于對成績的提升,提高在數學課堂上的注意力,提高對于數學的興趣,提高對于數字的學習能力以及對于數字的敏感度和記憶力,由此來提高數學成績; 2、那么,九年級數學知識點歸納總結?一起來了解一下吧。
這篇關于初三數學知識點大總結的文章,是特地為大家整理的,希望對大家有所幫助!
第一章 實數
一、 重要概念
1.數的分類及概念
數系表:
說明:“分類”的原則:1)相稱(不重、不漏)
2)有標準
2.非負數:正實數與零的統稱。(表為:x≥0)
常見的非負數有:
性質:若干個非負數的和為0,則每個非負擔數均為0。
3.倒數: ①定義及表示法
②性質:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a>1時,1/a<1;D.積為1。
4.相反數: ①定義及表示法
②性質:A.a≠0時,a≠-a;B.a與-a在數軸上的位置;C.和為0,商為-1。
5.數軸:①定義(“三要素”)
②作用:A.直觀地比較實數的大小;B.明確體現絕對值意義;C.建立點與實數的一一對應關系。
6.奇數、偶數、質數、合數(正整數—自然數)
定義及表示:
奇數:2n-1
偶數:2n(n為自然數)
7.絕對值:①定義(兩種):
代數定義:
幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。
②│a│≥0,符號“││”是“非負數”的標志;③數a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現,其關鍵一步是去掉“││”符號。
數學來源于生活,生活當中有許多事情離不開數學,因此我們要挖掘讓孩子感到親切的生活中的數學材料,2022 中考數學知識點歸納有哪些你知道嗎? 一起來看看2022中考數學知識點歸納,歡迎查閱!
中考數學知識點歸納
知識點1:一元二次方程的基本概念
1、一元二次方程3x2+5x-2=0的常數項是-2。
2、一元二次方程3x2+4x-2=0的一次項系數為4,常數項是-2。
3、一元二次方程3x2-5x-7=0的二次項系數為3,常數項是-7。
4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。
知識點2:直角坐標系與點的位置
1、直角坐標系中,點A(3,0)在y軸上。
2、直角坐標系中,x軸上的任意點的橫坐標為0。
3、直角坐標系中,點A(1,1)在第一象限。
4、直角坐標系中,點A(-2,3)在第四象限。
5、直角坐標系中,點A(-2,1)在第二象限。
知識點3:已知自變量的值求函數值
1、當x=2時,函數y=的值為1。
2、當x=3時,函數y=的值為1。
3、當x=-1時,函數y=的值為1。
知識點4:基本函數的概念及性質
1、函數y=-8x是一次函數。
2、函數y=4x+1是正比例函數。
很多人想知道初三數學的學習上需要掌握哪些重點知識,下面我為大家整理了一些中考必背的數學重點知識,供參考!
中考數學重要知識點歸納
一、基本知識
一、數與代數
A、數與式:
1、有理數
有理數:
①整數→正整數/0/負整數
②分數→正分數/負分數
數軸:
①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。
②任何一個有理數都可以用數軸上的一個點來表示。
③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位于原點的兩側,并且與原點距離相等。
④數軸上兩個點表示的數,右邊的總比左邊的大。正數大于0,負數小于0,正數大于負數。
絕對值:
①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。
②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:
加法:
①同號相加,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,并用較大的絕對值減去較小的絕對值。
③一個數與0相加不變。
減法:減去一個數,等于加上這個數的相反數。
九年級數學全冊知識點總結
上冊 第一章、圖形與證明(二)
(一)、知識框架
1. 等腰三角形
等腰三角形的性質和判定 等邊三角形的性質和判定 線段的垂直平分線的性質和判定 角的平分線的性質和判定
。
2. 直角三角形全等的判定: HL
3. 平行四邊形
平行四邊形的性質和判定:4個判定定理 矩形的性質和判定
菱形的性質和判定:3個判定定理
正方形的性質和判定:2個判定定理
4. 等腰梯形的性質和判定
(1)解決梯形問題的基本思路:通過分割和拼接轉化成三角形和平行四邊形進行解決。 注意:
即需要掌握常作的輔助線。
1 (2)梯形的面積公式:S =(a +b )h =lh (l -中位線長) 2
三角形的中位線
5. 中位線梯形的中位線
(二) 知識詳解
2.1、等腰三角形的判定、性質及推論
性質:等腰三角形的兩個底角相等(等邊對等角) 判定:有兩個角相等的三角形是等腰三角形(等角對等邊)
推論:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合(即“三線合一”) 2.2、等邊三角形的性質及判定定理
性質定理:等邊三角形的三個角都相等,并且每個角都等于60度;等邊三角形的三條邊都滿足“三線合一”的性質;等邊三角形是軸對稱圖形,有3條對稱軸。
初三學習的知識是初中三年學習的匯總,為了方便大家更好地復習數學,以下是我分享給大家的初三數學重點知識點,希望可以幫到你!
初三數學重點知識點
1.不在同一直線上的三點確定一個圓。
2.垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1
①平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等于定長的點的 ***
5.圓的內部可以看作是圓心的距離小于半徑的點的 ***
6.圓的外部可以看作是圓心的距離大于半徑的點的 ***
7.同圓或等圓的半徑相等
8.到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等。
11定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它 的內對角
12.①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
13.切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質定理 圓的切線垂直于經過切點的半徑
15.推論1 經過圓心且垂直于切線的直線必經過切點
16.推論2 經過切點且垂直于切線的直線必經過圓心
17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等 外角等于內對角
19.如果兩個圓相切,那么切點一定在連心線上
20.①兩圓外離 d>R+r
②兩圓外切 d=R+r
③.兩圓相交 R-rr
④.兩圓內切 d=R-rR>r ⑤兩圓內含dr
21.定理 相交兩圓的連心線垂直平分兩圓的公共弦
22.定理 把圓分成nn≥3:
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23.定理 任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
24.正n邊形的每個內角都等于n-2×180°/n
25.定理 正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點周圍有k個正n邊形的角,由于這些角的和應為 360°,因此k×n-2180°/n=360°化為n-2k-2=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內公切線長= d-R-r 外公切線長= d-R+r
32.定理 一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2 半圓或直徑所對的圓周角是直角;90°的圓周角所 對的弦是直徑
35.弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
初三數學復習技巧
注重課本知識
全面復習基礎知識,加強基本技能訓練的第一階段的復習工作我們已經結束了,在第二階段的復習中,反思和總結上一輪復習中的遺漏和缺憾,會發現有些知識還沒掌握好,解題時還沒有思路,因此要做到邊復習邊將知識進一步歸類,加深記憶;還要進一步理解概念的內涵和外延,牢固掌握法則、公式、定理的推導或證明,進一步加強解題的思路和方法;同時還要查詢一些類似的題型進行強化訓練,要及時有目的有針對性的補缺補漏,直到自己真正理解會做為止,決不要輕易地放棄。
以上就是九年級數學知識點歸納總結的全部內容,對求二次函數的解析式,要合理選用一般式或頂點式,并應充分運用拋物線關于對稱軸對稱的特點,尋找新的點的坐標。如下圖: 2.利用圖象一次(正比例)函數、反比例函數、二次函數中的k、b;a、b、c的符號。 六、。