日韩国产欧美区_高清电影一区_国产精品日韩精品在线播放_日韩精品三区四区

當前位置: 首頁 > 學科分類 > 數(shù)學

概率數(shù)學,高三數(shù)學概率講解

  • 數(shù)學
  • 2023-08-11

概率數(shù)學?概率又稱或然率、機會率或機率、可能性,是數(shù)學概率論的基本概念,是一個在0到1之間的實數(shù),是對隨機事件發(fā)生的可能性的度量。物理學中常稱為幾率。第一個地推算概率的人是16世紀的卡爾達諾。那么,概率數(shù)學?一起來了解一下吧。

高中概率的公式

概率,又稱或然率、機會率、機率(幾率)或可能性,是概率論的基本概念。概率是對隨機事件發(fā)生的可能性的度量,一般以一個在0到1之間的實數(shù)表示一個事件發(fā)生的可能性大小。越接近1,該事件更可能發(fā)生;越接近0,則該事件更不可能發(fā)生。如某人有百分之多少的把握能通過這次考試,某件事發(fā)生的可能性是多少,這些都是概率的實例。

事件

在一個特定的隨機試驗中,稱每一可能出現(xiàn)的結果畢輪為一個基本事件,全體基本事件的集合稱為基本空間。隨機事件(簡稱事件)是由某些基本事件組成的,例如,在連續(xù)擲兩次骰子的隨機試驗中,用Z,Y分別表示第一次和第二次出現(xiàn)的點數(shù),Z和Y可以取值1、2、3、4、5、6,每一點(Z,Y)表示一個基本事件,因而基本空間包含36個元素。“點數(shù)之和為2”是一事件,它是由一個基本事件(1,1)組成,可用集合{(1,1)}表示,“點數(shù)之和為4”也是一事件,它由(1,3),(2,2),(3,1)3個基本事件組成,可用集合{(1,3),(3,1),(2,2)}表示。如果把“點數(shù)之和為1”也看成事件,則它是一個不包瞎知含任何基本事件的事件,稱為不可能事件。P(不可能事件)=0。在試驗中此事件不可能發(fā)生。如果把“點數(shù)之和小于40”看成一事件,它包含所有基本事件,在試驗中此事件一定發(fā)生,所以稱為必然事件。

高中概率講解

高考數(shù)學概率公式如下:

1、事件的概率公式

P(A)=n(A)/n(S),其中n(A)表示事件A發(fā)生的可能性,n(S)表示樣本空間的總數(shù)。

2、條件概率公式

P(A|B)=P(A∩B)/P(B),其中P(A∩B)表示事件A和事件B同時發(fā)生的概率,P(B)表示事件B發(fā)生的概率。

3、全概率公式

P(A)=ΣP(A|Bi)×P(Bi),其中Bi表示樣本空間的一組互不相交的事件,P(A|Bi)表示在事件Bi發(fā)生的條件下事件A發(fā)生的概率,P(Bi)表示事件Bi發(fā)生的概率。

4、貝葉斯公式

P(Bi|A)=P(A|Bi)×P(Bi)/ΣP(A|Bj)×P(Bj),其中P(Bi|A)表示在事件A發(fā)生的條件下事件Bi發(fā)生的概率,P(A|Bi)表示在事件Bi發(fā)生的條件下事件A發(fā)生的概率,P(Bi)表示事件Bi發(fā)生的概率,ΣP(A|Bj)×P(Bj)表示全概率。

概率的基本性質:

1、必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1。

2、當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B)。

3、若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B)。

生物數(shù)學屬于應用數(shù)學嗎

概率論

probability theory

研究隨機現(xiàn)象數(shù)量規(guī)律的數(shù)學分支。隨機現(xiàn)象是相對于決定性現(xiàn)象而言的。在一定條件下必然發(fā)生某一結果的現(xiàn)象稱為決定性現(xiàn)象。例如在標準大氣壓下,純水加熱到100℃時水必然會沸騰等。隨機現(xiàn)象則是指在基本條件不變的情況下,一系列試驗或觀察會得到不同結果的現(xiàn)象。每一次試驗或觀察前,不能肯定會出現(xiàn)哪種結果,呈現(xiàn)出偶然性。例如,擲神槐一硬幣,可能出現(xiàn)正面或反面,在同一工藝條件下生產出的燈泡,其壽命長短參差不齊等等。隨機現(xiàn)象的實現(xiàn)和對它的觀察稱為隨機試驗。隨機試驗的每一可能結果稱為一個基本事件,一個或一組基本事件統(tǒng)稱隨機事件,或簡稱事件。事件的概率則是衡量該事件發(fā)生的可能性的量度。雖然在一次隨機試驗中某個事件的發(fā)生是帶有偶然性的,但那些可在相同條件下大量重復的隨機試驗卻往往呈現(xiàn)出明顯的數(shù)量規(guī)律。例如,連續(xù)多次擲一均勻的硬幣,出現(xiàn)正面的頻率隨著投擲次數(shù)的增加逐漸趨向于1/2。又如,多次測量一物體的長度,其測量結果的平均值隨著測量次數(shù)的增加,逐漸穩(wěn)定于一常數(shù),并且諸測量值大都落在此常數(shù)的附近,其分布狀況呈現(xiàn)中間多,兩頭少及某程度的對稱性。大數(shù)定律及中心極限定理就是描述和論證這些規(guī)律的。

概率的數(shù)學定義

概率又稱或然率、機會率或機率、可能性,是數(shù)學概率論的基本概念,是一個在0到1之間的實數(shù),是對隨機事件發(fā)生的可能性的度量。物理學中常稱為幾率。

第一個地推算概率的人是16世紀的卡爾達諾。記載在他的著作Liber de Ludo Aleae中。書中關于概率的內容是由Gould從拉丁文翻譯出來的。

數(shù)學概率的知識點

1、事件可分為確定事件和不確定事件,不確定事件又稱為隨鋒做友碧機事件。

2、事件和概率的表示方法:一般地,事件用英文大寫字母A,B,C,…,表示事件A的概率p,可記為P(A)=P。必然事件的概率為1。

3、事件的概率:必然事件的概率為1,不可能事件的概率為銀告衡0。

數(shù)學統(tǒng)計與概率

概率亦稱“或然率”。它反映隨機事件出現(xiàn)的可能性(likelihood)大小。隨機事件是指在相同條件下,可能出現(xiàn)也可能譽搭雀不出枝掘現(xiàn)的慶早事件。

以上就是概率數(shù)學的全部內容,概率亦稱“或然率”。它反映隨機事件出現(xiàn)的可能性(likelihood)大小。隨機事件是指在相同條件下,可能出現(xiàn)也可能不出現(xiàn)的事件。例如,從一批有正品和次品的商品中,隨意抽取一件,“抽得的是正品”就是一個隨機事件。

猜你喜歡

主站蜘蛛池模板: 宁化县| 延津县| 洱源县| 宣威市| 瑞金市| 禄丰县| 南靖县| 百色市| 海南省| 长兴县| 读书| 安仁县| 廊坊市| 元谋县| 海安县| 潞西市| 斗六市| 汉寿县| 万山特区| 黄浦区| 竹溪县| 尼玛县| 札达县| 托克逊县| 阳城县| 兴安盟| 永安市| 崇明县| 绥中县| 黑龙江省| 克什克腾旗| 水城县| 织金县| 佳木斯市| 容城县| 珠海市| 泽州县| 禹城市| 汉沽区| 淮阳县| 元谋县|